GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-06
    Description: In this letter, we report on the design, development, and field operation of a surface-based multi-channel ultraw- ideband (UWB) ultrahigh frequency (UHF) radar to measure ice thickness, basal conditions, and ice-shelf bottom melt rates. The radar concept is based on the recent success in sounding shallow low-loss ice (∼1 km) and measuring the ice-shelf melt rates with a 600–900-MHz low-power radar, referred to as the accumulation radar. Our proposed radar system operates over the same frequency band, from 600 to 900 MHz, with a peak transmit power of 800 W. We used a large and lightweight 16 m × 17 m antenna array arranged in a Mills cross-configuration to obtain the required radar sensitivity to sound more than 3-km- thick ice and image the internal layers at a fine vertical resolution of about 60 cm. We used the system at the East Greenland Ice-coring Project (EGRIP) site in Summer 2018 to collect data over ∼100 km of lines. We sounded about 2.8-km-thick ice with more than 40-dB signal-to-noise ratio and mapped the internal layers to a depth of almost 2.5 km. Our results show that an airborne or spaceborne radar operating at frequencies as high as 900 MHz with a large antenna array can be used to map large ice sheets in Greenland and Antarctica.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-27
    Description: The high-Alpine ice-core drilling site Colle Gnifetti (CG), Monte Rosa, Swiss/Italian Alps, provides climate records over the last millennium and beyond. However, the full exploitation of the oldest part of the existing ice cores requires complementary knowledge of the intricate glacio-meteorological settings, including glacier dynamics. Here, we present new ice-flow modeling studies of CG, focused on characterizing the flow at two neighboring drill sites in the eastern part of the glacier. The3-D full Stokes ice-flow model is thermo-mechanically coupled and includes firn rheology, firn densification and enthalpy transport, and is implemented using the finite element software Elmer/Ice. Measurements of surface velocities, accumulation, borehole inclination, density and englacial temperatures are used to validate the model output. We calculate backward trajectories and map the catchment areas. This constrains, for the first time at this site, the so-called upstream effects for the stable water isotope time series of the two ice cores drilled in 2005 and 2013. The model also provides a 3-D age field of the glacier and independent ice-core chronologies for five ice-core sites. Model results are a valuable addition to the existing glaciological and ice-core datasets. This especially concerns the quantitative estimate of upstream conditions affecting the interpretation of the deep ice-core layers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-11
    Description: The Antarctic ice sheet has been losing mass over past decades through the accelerated flow of its glaciers, conditioned by ocean temperature and bed topography. Glaciers retreating along retrograde slopes (that is, the bed elevation drops in the inland direction) are potentially unstable, while subglacial ridges slow down the glacial retreat. Despite major advances in the mapping of subglacial bed topography, significant sectors of Antarctica remain poorly resolved and critical spatial details are missing. Here we present a novel, high-resolution and physically based description of Antarctic bed topography using mass conservation. Our results reveal previously unknown basal features with major implications for glacier response to climate change. For example, glaciers flowing across the Transantarctic Mountains are protected by broad, stabilizing ridges. Conversely, in the marine basin of Wilkes Land, East Antarctica, we find retrograde slopes along Ninnis and Denman glaciers, with stabilizing slopes beneath Moscow University, Totten and Lambert glacier system, despite corrections in bed elevation of up to 1 km for the latter. This transformative description of bed topography redefines the high- and lower-risk sectors for rapid sea level rise from Antarctica; it will also significantly impact model projections of sea level rise from Antarctica in the coming centuries.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    IASC
    In:  EPIC3IASC Workshop on the dynamics and mass budget of Arctic glaciers, Obergurgl, Austria, 2020-01-28-2020-01-30Obergurgl, Austria, IASC, 56 p.
    Publication Date: 2020-06-08
    Description: Kongsvegen is a well-studied surge-type glacier in the Kongsfjord area of northwest Svalbard. Long-term monitoring has shown that the ice surface velocity has been increasing for the past 4 years; presenting a unique opportunity to study the internal ice structure, basal conditions and thermal regime that play a crucial role in initiating glacier surges. In April 2019, three-component seismic vibroseis surveys were conducted at two sites on the glacier, using a small Electrodynamic Vibrator source (ElViS). Site 1 is in the ablation area and site 2 near the equilibrium line, where the greatest increase in ice surface velocity has been observed. Initial analysis indicates the conditions at the two sites are significantly different. At site 1 the ice is around 220 m thick, sitting on a relatively flat and uniform bed, with no clear change in the bed reflection along the profile. There is a horizontally layered sediment package ∼60 m thick underlaying the bed. The ice column shows no internal layering. By contrast at site 2 (Fig. 1), where the ice is around 390 m thick, there is much more complex internal ice structure. Clear internal ice reflections are visible between 150-250 m depth – where we expect a transition from cold to temperate ice. Further reflections in the 100 m above the bed indicate there could be shearing or sediment entrainment in this area. Below the bed, cross-cutting layers are clearly visible and the bed reflection itself shows changing reflection polarity – suggesting water or very wet sediment is present in some areas. This suggests ice movement by basal sliding and shearing is likely.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  EPIC380. Jahrestagung der Deutschen Geophysikalischen Gesellschaft, München, Germany, 2020-03-23-2020-03
    Publication Date: 2020-04-20
    Description: Ice streams are fast moving regions within the large ice sheets of Greenland and Antarctica. Recent developments of high resolution ice sounding radar systems for deployment from an aircraft or on the ground allow a detailed view of internal structures associated with the particular stress and strain fields related to the particular flow fields across the margins between slow and fast moving ice. Exemplary data will be shown from the margins of the North-East Greenland ice stream which were obtained in association with the EASTGRIP icecore drilling project.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3NEGIS Symposium 2020 - EGRIP Online Seminars, Online, 2020-09-15-2020-11-03
    Publication Date: 2020-10-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3The Cryosphere, COPERNICUS GESELLSCHAFT MBH, 14(11), pp. 3663-3685, ISSN: 1994-0416
    Publication Date: 2020-11-16
    Description: Surface mass balances of polar ice sheets are essential to estimate the contribution of ice sheets to sea level rise. Uncertain snow and firn densities lead to significant uncertainties in surface mass balances, especially in the interior regions of the ice sheets, such as the East Antarctic Plateau (EAP). Robust field measurements of surface snow density are sparse and challenging due to local noise. Here, we present a snow density dataset from an overland traverse in austral summer 2016/17 on the Dronning Maud Land plateau. The sampling strategy using 1 m carbon fiber tubes covered various spatial scales, as well as a high-resolution study in a trench at 79∘ S, 30∘ E. The 1 m snow density has been derived volumetrically, and vertical snow profiles have been measured using a core-scale microfocus X-ray computer tomograph. With an error of less than 2 %, our method provides higher precision than other sampling devices of smaller volume. With four spatially independent snow profiles per location, we reduce the local noise and derive a representative 1 m snow density with an error of the mean of less than 1.5 %. Assessing sampling methods used in previous studies, we find the highest horizontal variability in density in the upper 0.3 m and therefore recommend the 1 m snow density as a robust measure of surface snow density in future studies. The average 1 m snow density across the EAP is 355 kg m−3, which we identify as representative surface snow density between Kohnen Station and Dome Fuji. We cannot detect a temporal trend caused by the temperature increase over the last 2 decades. A difference of more than 10 % to the density of 320 kg m−3 suggested by a semiempirical firn model for the same region indicates the necessity for further calibration of surface snow density parameterizations. Our data provide a solid baseline for tuning the surface snow density parameterizations for regions with low accumulation and low temperatures like the EAP.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-20
    Description: The internal layer architecture and crystal anisotropy in ice are two main parameters to take into account for analysing particle signals within the IceCube and follow-on arrays. Using airborne and ground-based radar measurements we present a new approach to especially define the horizontal anisotropy of the bulk fabric in ice and suggest implementation during pre-site surveys in particular for the RNO-G test array near Summit, Greenland.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-04-19
    Description: Curvilinear channels on the surface of an ice shelf indicate the presence of large channels at the base. Modelling studies have shown that where these surface expressions intersect the grounding line, they coincide with the likely outflow of subglacial water. An understanding of the initiation and the ice–ocean evolution of the basal channels is required to understand the present behaviour and future dynamics of ice sheets and ice shelves. Here, we present focused active seismic and radar surveys of a basal channel, ∼950 m wide and ∼200 m high, and its upstream continuation beneath Support Force Glacier, which feeds into the Filchner Ice Shelf, West Antarctica. Immediately seaward from the grounding line, below the basal channel, the seismic profiles show an ∼6.75 km long, 3.2 km wide and 200 m thick sedimentary sequence with chaotic to weakly stratified reflections we interpret as a grounding line fan deposited by a subglacial drainage channel directly upstream of the basal channel. Further downstream the seabed has a different character; it consists of harder, stratified consolidated sediments, deposited under different glaciological circumstances, or possibly bedrock. In contrast to the standard perception of a rapid change in ice shelf thickness just downstream of the grounding line, we find a flat topography of the ice shelf base with an almost constant ice thickness gradient along-flow, indicating only little basal melting, but an initial widening of the basal channel, which we ascribe to melting along its flanks. Our findings provide a detailed view of a more complex interaction between the ocean and subglacial hydrology to form basal channels in ice shelves.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-11-02
    Description: Advances in radio-echo sounding technology over the last two decades made it possible to map complex englacial structures in the lower part of the Greenland and Antarctic Ice Sheet. Deformation structures are made visible by distorted isochrones acting as radar reflectors. Decoding the formation history of these structures offers an excellent possibility to reconstruct past ice movements, and thus provides an additional archive about processes on the earth's surface in the past. In this study, we use ultra-wideband ice-penetrating radar data to map the deformation of the radar stratigraphy in Northern Greenland. We construct 3-dimensional horizons from folded radar layers of features which show no apparent link to the current velocity field or the regional bed topography. Furthermore, we are able to constrain the geometry and spatial extend of folds, which suggests that they were formed in several stages and in a different ice-dynamic setting than the present one in Northern Greenland.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...