GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2020-2022  (1)
  • 2010-2014  (2)
  • 1
    Online-Ressource
    Online-Ressource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Schlagwort(e): Renewable energy sources. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (290 pages)
    Ausgabe: 1st ed.
    ISBN: 9783642133527
    DDC: 333.88
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- 1 Thermal Structure of the Earth -- 1.1 Renewable Energies, Global Aspects -- 1.2 Internal Structure of the Earth -- 1.3 Energy Budget of the Planet -- 1.4 Heat Transport and Thermal Parameters -- 1.5 Brief Outline of Methods for Measuring Thermal Parameters -- 2 History of Geothermal Energy Use -- 2.1 Early Utilization of Geothermal Energy -- 2.2 History of Utilization of Geothermal Energy in the Last 150 years -- 3 Geothermal Energy Resources -- 3.1 Energy -- 3.2 Significance of "Renewable" Energies -- 3.3 Status of Geothermal Energy Utilization -- 3.4 Geothermal Energy Sources -- 4 Applications of Geothermal Energy -- 4.1 Near Surface Geothermal Systems -- 4.2 Deep Geothermal Systems -- 4.3 Efficiency of Geothermal Systems -- 4.4 Major Geothermal Fields, High Enthalpy Fields -- 5 Potential Perspectives of Geothermal Energy Utilization -- 6 Geothermal Probes -- 6.1 Planning Principles -- 6.2 Construction of Ground Source Heat Exchangers -- 6.3 Dimensioning and Design of Geothermal Probes -- 6.3.1 Heat Pumps -- 6.3.2 Thermal Parameters and Computer Programs for the System Design of Ground Source Heat Pump Systems -- 6.4 Drilling Methods for Borehole Heat Exchangers -- 6.4.1 Rotary Drilling -- 6.4.2 Down-the-Hole Hammer Methods -- 6.4.3 Concluding Remarks, Technical Drilling Risks -- 6.5 Backfill and Grouting of Geothermal Probes -- 6.6 Construction of Deep Geothermal Probes -- 6.7 Operating Geothermal Probes: Potential Risks, Malfunctions and Damages -- 6.8 Special Systems and Further Developments -- 6.8.1 Geothermal Probe Fields -- 6.8.2 Cooling with Geothermal Probes -- 6.8.3 Combined Solar Thermal: Geothermal Systems -- 6.8.4 Geothermal Probe: Performance and Quality Control -- 6.8.5 Geothermal Probes Operating with Phase Changes -- 7 Geothermal Well Systems -- 7.1 Building Geothermal Well Systems. , 7.2 Chemical Aspects of Two-Well Systems -- 7.3 Thermal Range of Influence, Numerical Models -- 8 Hydrothermal Systems, Geothermal Doublets -- 8.1 Geologic and Tectonic Structure of the Underground -- 8.2 Thermal and Hydraulic Properties of the Target Aquifer -- 8.3 Hydraulic and Thermal Range of Hydrothermal Doublets -- 8.4 Hydrochemistry of Hot Waters from Great Depth -- 8.5 Reservoir-Improving Measures, Efficiency-Boosting Measures, Stimulation -- 8.6 Productivity Risk, Exploration Risk, Economic Efficiency -- 8.6.1 Exploration Risks -- 8.7 Some Site Examples of Hydrothermal Systems -- 8.7.1 High-Enthalpy Hydrothermal Systems -- 8.7.2 Low-Enthalpy Hydrothermal Systems -- 8.7.2.1 Paris Basin (France) -- 8.7.2.2 Bavarian Molasse Basin, Unterhaching (Germany) -- 8.7.2.3 Bruchsal Research Site in the Upper Rhine Rift Valley (Germany) -- 8.8 Project Planning of Hydrothermal Power Systems -- 8.8.1 Phase 1: Preliminary study -- 8.8.2 Phase 2: Feasibility study -- 8.8.3 Phase 3: Exploration -- 8.8.4 Phase 4: Development -- 9 Enhanced-Geothermal-Systems, Hot-Dry-Rock Systems, Deep-Heat-Mining -- 9.1 Techniques, Procedures, Strategies, Aims -- 9.2 Historical Development of the Hydraulic Fracturing Technology, Early HDR Sites -- 9.3 Stimulation Procedures -- 9.4 Experience and Dealing with Micro-Seismicity -- 9.5 Recommendations, Notes -- 10 Environmental Issues Related to Deep Geothermal Systems -- 10.1 Seismicity Related to EGS Projects -- 10.1.1 Induced Earthquakes -- 10.1.2 Quantifying Seismic Events -- 10.1.3 The Basel Incident -- 10.1.4 Observed Seismicity at Other EGS Projects -- 10.1.5 Conclusions and Recommendations Regarding Seismicity Control in Hydrothermal and Petrothermal (EGS) Projects -- 10.2 Interaction Between Geothermal System Operation and the Subsurface -- 10.3 Environmental Issues Related to Surface Installations and Operation. , 11 Drilling Techniques for Deep Wellbores -- 12 Geophysical Methods, Exploration and Analysis -- 12.1 Geophysical Pre-drilling Exploration, Seismic Investigations -- 12.2 Geophysical Well Logging and Data Interpretation -- 13 Testing the Hydraulic Properties of the Drilled Formations -- 13.1 Principles of Hydraulic Testing -- 13.2 Types of Tests, Planning and Implementation, Evaluation Procedures -- 13.3 Tracer Experiments -- 13.4 Temperature Evaluation Methods -- 14 The Chemical Composition of Deep Geothermal Waters and Its Consequences for Planning and Operating a Geothermal Power Plant -- 14.1 Sampling and Laboratory Analyses -- 14.2 Deep Geothermal Waters, Data and Interpretation -- 14.3 Mineral Scales and Materials Corrosion -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Buch
    Buch
    Berlin : Springer
    Schlagwort(e): Metamorphic rocks ; Petrogenesis ; Metamorphose ; Metamorphes Gestein ; Lehrbuch ; Metamorphes Gestein ; Gesteinsbildung ; Metamorphes Gestein ; Metamorphose ; Gesteinskunde
    Materialart: Buch
    Seiten: XII, 428 S. , Ill., graph. Darst., Kt. , 25 cm
    Ausgabe: 8. ed.
    ISBN: 3540741682 , 9783540741688
    DDC: 552/.4
    Sprache: Englisch
    Anmerkung: Literaturangaben , pt. 1. Introduction and general aspects of metamorphism. Definition, conditions and types of metamorphism ; Metamorphic rocks ; Metamorphic processes ; Metamorphic gradept. 2. Metamorphism of specific rock types. Metamorphism of ultramafic rocks ; Metamorphism of dolomites and limestones ; Metamorphism of pelitic rocks (metapelites) ; Metamorphism of marls ; Metamorphism of mafic rocks ; Metamorphism of quartzofeldspathic rocks.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-07-26
    Beschreibung: Garnet is a prototypical mineral in metamorphic rocks because it commonly preserves chemical and textural features that can be used for untangling its metamorphic development. Large garnet porphyroblasts may show extremely complex internal structures as a result of a polycyclic growth history, deformation, and modification of growth structures by intra- and intercrystalline diffusion. The complex internal structure of garnet porphyroblasts from garnet–phengite schists (GPS) of the Zermatt area (Western Alps) has been successfully decoded. The centimetre-sized garnet porphyroblasts are composed of granulite facies garnet fragments overgrown by a younger generation of grossular-rich eclogite facies garnet. The early granulite facies garnet (G-Grt) formed from low-P, high-T metamorphism during a pre-Alpine orogenic event. The late garnet (E-Grt) is typical of high-pressure, low-temperature (HPLT) metamorphism and can be related to Alpine subduction of the schists. Thus, the garnet of the GPS are polycyclic (polymetamorphic). G-Grt formation occurred at ~670 MPa and 780°C, E-Grt formed at ~1.7 GPa and 530°C. The G-Grt is relatively rich in Prp and poor in Grs, while E-Grt is rich in Grs and poor in Prp. The Alm content (mol.%) of G-Grt is 68 of E-Grt 55. After formation of E-Grt between and around fragmented G-Grt at 530°C, the GPS have been further subducted and reached a maximum temperature of 580°C before exhumation started. Garnet composition profiles indicate that the initially very sharp contacts between the granulite facies fragments of G-Grt and fracture seals of HPLT garnet (E-Grt) have been modified by cation diffusion. The profiles suggest that Ca did not exchange at the scale of 1 µm, whereas Fe and Mg did efficiently diffuse at the derived maximum temperature of 580°C for the GPS at the scale of 7–8 µm. The Grt–Grt diffusion profiles resulted from spending c. 10 Ma at 530–580°C along the P–T–t path. The measured Grt composition profiles are consistent with diffusivities of log DMgFe = −25.8 m2/s from modelled diffusion profiles. Mg loss by diffusion from G-Grt is compensated by Fe gain by diffusion from E-Grt to maintain charge balance. This leads to a distinctive Fe concentration profile typical of uphill diffusion.
    Schlagwort(e): 549 ; diffusion ; eclogite facies ; garnet ; porphyroblast ; uphill diffusion
    Sprache: Englisch
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...