GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Immunohistochemistry  (3)
  • 1990-1994  (3)
  • 1
    ISSN: 1432-0533
    Keywords: Cytoplasmic body myopathy ; Immunohistochemistry ; Desmin ; Intermediate filaments ; Actin filaments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In a fine structural and immunocytochemical study, the latter performed on semithin sections of epoxy resin embedded skeletal muscle fibers, three types of cytoplasmic bodies were identified in a case of cytoplasmic body myopathy: (1) The first type, the classical type, showed a central core and a light halo with radiating actin filaments at the periphery. (2) The second type, the spheroid body was characterized by irregularly arranged granular masses associated with intermediate filaments. Desmin immunoreactivity occurred in the central and peripheral parts, where filaments of intermediate size were visualized by electron microscopy. Desmin immunoreactivity was noted also at the Z-bands of striated annulets, within areas of disordered myofibrils, such as sarcoplasmic masses, and in atrophic muscle fibers. (3) The third type of the cytoplasmic body was composed mainly of large masses of uneven granularity and electron density. The center of this type reacted to anti-actin antibody suggesting that the 5- to 6-nm filaments, which ultrastructurally proved to be a major component, were of the actin type. By contrast, neither intermediate filaments nor actin microfilaments were found by electron microscopy in cytoplasmic bodies in a second case where no immunoreaction to desmin or actin occurred. Anti-vimentin antibody stained only the cytoplasm of endomysial cells, but not the inclusion bodies. Some other, unusual inclusions with 18- to 20-nm tubulo-filamentous structures have to be distinguished from the various types of filaments in cytoplasmic bodies. It is concluded, that pleomorphism and heterogeneity of “cytoplasmic bodies” have to be taken into consideration when classifying cytoplasmic body myopathies.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Key words: Perineurial cells ; Nerve regeneration ; Immunohistochemistry ; Epithelial membrane antigen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Perineurial cells are specialized connective tissue cells that form a barrier between endoneurium and epineurium in normal nerves. In the present study, the formation of the perineurium after transection of rat sciatic nerves was investigated. The cord bridging the gap between proximal and distal stumps through silicone tubes was studied 3, 7, 12, 18, and 21 days after surgery using electron microscopy and antibodies against epithelial membrane antigen (EMA), a marker for perineurial cells that has thus far not been applied to the study of differentiating cells in nerve tubulation systems. Initially, a thin cord consisting of fibrin bridged the gap between the stumps. At 7 days, longitudinal cells had migrated from both stumps toward the center of the tubes on the surface of the fibrin cord. These cells were immunoreactive with anti-EMA. At 12 days, ultrastructural features of perineurial cells (desmosomes, tight junctions, actin filaments with dense bodies, tonofilaments) were prominent in these cells. Subsequently, the gap was bridged through the perineurial tube by endothelial cells, pericytes, fibroblasts, Schwann cells, and axons. At 21 days, a single large nerve fascicle ensheathed by a mature perineurium was found between the stumps. Thus, the first cells to connect proximal and distal stumps in the investigated nerve regeneration silicon chamber system are perineurial cells. Through the tube formed by these cells, blood vessels and nerve fibers bridge the gap. Therefore, establishment of a perineurial connection between nerve stumps appears to be important in the sequence of events during nerve regeneration.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0533
    Keywords: Perineurial cells ; Nerve regeneration ; Immunohistochemistry ; Epithelial membrane antigen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Perineurial cells are specialized connective tissue cells that form a barrier between endoneurium and epineurium in normal nerves. In the present study, the formation of the perineurium after transection of rat sciatic nerves was investigated. The cord bridging the gap between proximal and distal stumps through silicone tubes was studied 3, 7, 12, 18, and 21 days after surgery using electron microscopy and antibodies against epithelial membrane antigen (EMA), a marker for perineurial cells that has thus far not been applied to the study of differentiating cells in nerve tubulation systems. Initially, a thin cord consisting of fibrin bridged the gap between the stumps. At 7 days, longitudinal cells had migrated from both stumps toward the center of the tubes on the surface of the fibrin cord. These cells were immunoreactive with anti-EMA. At 12 days, ultrastructural features of perineurial cells (desmosomes, tight junctions, actin filaments with dense bodies, tonofilaments) were prominent in these cells. Subsequently, the gap was bridged through the perineurial tube by endothelial cells, pericytes, fibroblasts, Schwann cells, and axons. At 21 days, a single large nerve fascicle ensheathed by a mature perineurium was found between the stumps. Thus, the first cells to connect proximal and distal stumps in the investigated nerve regeneration silicon chamber system are perineurial cells. Through the tube formed by these cells, blood vessels and nerve fibers bridge the gap. Therefore, establishment of a perineurial connection between nerve stumps appears to be important in the sequence of events during nerve regeneration.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...