GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-11-30
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The deep-sea mining industry is currently at a point where large-sale, commercial polymetallic nodule exploitation is becoming a more realistic scenario. At the same time, certain aspects such as the spatiotemporal scale of impacts, sediment plume dispersion and the disturbance-related biological responses remain highly uncertain. In this paper, findings from a small-scale seabed disturbance experiment in the German contract area (Clarion-Clipperton Zone, CCZ) are described, with a focus on the soft-sediment ecosystem component. Despite the limited spatial scale of the induced disturbance on the seafloor, this experiment allowed us to evaluate how short-term (〈 1 month) soft-sediment changes can be assessed based on sediment characteristics (grain size, nutrients and pigments) and metazoan meiofaunal communities (morphological and metabarcoding analyses). Furthermore, we show how benthic measurements can be combined with numerical modelling of sediment transport to enhance our understanding of meiofaunal responses to increased sedimentation levels. The lessons learned within this study highlight the major issues of current deep-sea mining-related ecological research such as deficient baseline knowledge, unrepresentative impact intensity of mining simulations and challenges associated with sampling trade-offs (e.g., replication).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-14
    Description: Abundance and composition of beach litter and microplastics (20–5000 μm, excluding fibres) were assessed in spring and autumn 2018 at various beaches along the Baltic Sea coast of Schleswig-Holstein, Northern Germany. The beach litter survey followed the OSPAR guidelines, while microplastics were extracted from sediment samples using density separation and were then identified with Raman μ-spectroscopy. We observed seasonality in the abundance and composition, but not in the mass of beach litter. The median microplastic abundance was 2 particles per 500 g of dry sediment in spring as well as in autumn, while six different synthetic polymers (PE, PP, PS, PET, PVC, POM) were detected. We found no correlation between the abundances of beach litter and microplastics. Our data represent the first systematic co-assessment of macro- and micro beach litter along the Baltic Sea coast of Schleswig-Holstein.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-14
    Description: Isolation and detection of microplastics (MP) in marine samples is extremely cost- and labor-intensive, limiting the speed and amount of data that can be collected. In the current work, we describe rapid measurement of net-collected MPs (net mesh size 300 µm) using a benchtop near-infrared hyperspectral imaging system during a research expedition to the subtropical North Atlantic gyre. Suspected plastic particles were identified microscopically and mounted on a black adhesive background. Particles were imaged with a Specim FX17 near-infrared linescan camera and a motorized stage. A particle mapping procedure was built on existing edge-finding algorithms and a polymer identification method developed using spectra from virgin polymer reference materials. This preliminary work focused on polyethylene, polypropylene, and polystyrene as they are less dense than seawater and therefore likely to be found floating in the open ocean. A total of 27 net tows sampled 2534 suspected MP particles that were imaged and analyzed at sea. Approximately 77.1% of particles were identified as polyethylene, followed by polypropylene (9.2%). A small fraction of polystyrene was detected only at one station. Approximately 13.6% of particles were either other plastic polymers or were natural materials visually misidentified as plastics. Particle size distributions for PE and PP particles with a length greater than 1 mm followed an approximate power law relationship with abundance. This method allowed at-sea, near real-time identification of MP polymer types and particle dimensions, and shows great promise for rapid field measurements of microplastics in net-collected samples.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-14
    Description: Abyssal plain communities rely on the overlying water column for a settling flux of organic matter. The origin and rate of this flux as well as the controls on its fine-scale spatial distribution following seafloor settlement are largely unquantified. This is particularly true across regions where anthropogenically-induced seafloor disturbance has occurred. Here, we observed, quantified and mapped a mass deposition event of gelatinous zooplankton carcasses (pyrosomes) in July-September 2015 across one such physically disturbed region in the Peru Basin polymetallic nodule province (4150 m). Seafloor in this area was disturbed with a plough harrow in 1989 (as part of the DISCOL experiment) causing troughs in the sediment. Other parts were disturbed with an epibenthic sled (EBS) during a cruise in 2015 resulting in steep-walled, U-shaped troughs. We investigated two hypotheses: a) gelatinous food falls contribute significantly to the abyssal plain carbon pump and b) physical seafloor disturbance influences abyssal distribution of organic matter. We combined optical and bathymetric seafloor observations, to analyze pyrosome distribution on seabeds with different levels of disturbance. 2954 pyrosome colonies and associated taxa were detected in 〉 14,000 seafloor images. The mean regional carbon (C) deposition associated with pyrosome carcasses was significant compared to the flux of particulate organic C (182 to 1543%), and the total respired benthic C flux in the DISCOL Experimental Area (39 to 184%). EBS-disturbed seafloor tracks contained 72 times more pyrosome-associated C than an undisturbed reference site, and up to 4 times more than an area disturbed in 1989. Deposited pyrosomes collected had a higher proportion of labile fatty acids compared to the sediment. We document the temporal and spatial extent of an abyssal food fall event with unprecedented detail and show that physical seafloor disturbance results in the accumulation of detrital material. Such accumulation may reduce oxygen availability and alter benthic community structure. Understanding both the relevance of large food falls and the fine scale topography of the seafloor, is necessary for impact assessment of technologies altering seafloor integrity (e.g. as a result of bottom-trawling or deep seabed mining) and may improve their management on a global scale.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-04-12
    Type: Conference or Workshop Item , NonPeerReviewed , info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-17
    Description: Upper-ocean velocities along the cruise track of Sonne cruise SO295 were continuously collected by a vessel-mounted Teledyne RD Instruments 75 kHz Ocean Surveyor ADCP. The transducer was located at 6.0 m below the water line. The instrument was operated in narrowband mode with 8 m bins and a blanking distance of 8.0 m, while 100 bins were recorded using a pulse of 1.45 s. Heading, pitch and roll data from the ship's gyro platforms and the navigation data were used by the data acquisition software VmDas internally to convert ADCP velocities into earth coordinates. The ship's velocity was calculated from position fixes obtained by the Global Positioning System (GPS). Accuracy of the ADCP velocities mainly depends on the quality of the position fixes and the ship's heading data. Further errors stem from a misalignment of the transducer with the ship's centerline. Data post-processing included water track calibration of the misalignment angle (-0.12° +/- 0.4167°) and scale factor (1.0012 +/- 0.0078) of the Ocean Surveyor signal. The average interval was set to 60 s. Velocity quality flagging is based on following threshold criteria: abs(UC) or abs(VC) 〉 1.5 m/s, rms(UC_z) or rms(VC_z) 〉 0.3.
    Keywords: Current velocity, east-west; Current velocity, north-south; DAM_Underway; DAM Underway Research Data; DATE/TIME; DEPTH, water; Echo intensity, relative; LATITUDE; LONGITUDE; Nodule Monit. II; Pings, averaged to a double ensemble value; Quality flag, current velocity; Seadatanet flag: Data quality control procedures according to SeaDataNet (2010); SO295; SO295_0_Underway-2; Sonne_2; Vessel mounted Acoustic Doppler Current Profiler [75 kHz]; VMADCP-75
    Type: Dataset
    Format: text/tab-separated-values, 2118875 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-17
    Description: Current velocities of the upper water column along the cruise track of R/V Sonne II cruise SO295 were collected by a vessel-mounted 38 kHz RDI Ocean Surveyor ADCP. The ADCP transducer was located at 6.0 m below the water line. The instrument was operated in narrowband mode (WM10) with a bin size of 32.00 m, a blanking distance of 16.00 m, and a total of 50 bins, covering the depth range between 54.0 m and 1622.0 m. Heading, pitch and roll data from the ship's motion reference unit and the navigation data from the Global Positioning systems were used by the data acquisition software VmDAS internally to convert ADCP velocities into earth coordinates. The ship's velocity was calculated from position fixes obtained by the Global Positioning System (GPS). Accuracy of the ADCP velocities mainly depends on the quality of the position fixes and the ship's heading data. Further errors stem from a misalignment of the transducer with the ship's centerline. Data post-processing included water track calibration of the misalignment angle (-0.0620° +/- 0.4465°) and scale factor (1.0030 +/- 0.0080) of the Ocean Surveyor signal. The velocity data were averaged in time using an average interval of 60 s. Velocity quality flagging is based on following threshold criteria: abs(UC) or abs(VC) 〉 1.5 m/s, rms(UC_z) or rms(VC_z) 〉 0.3.
    Keywords: Current velocity, east-west; Current velocity, north-south; DAM_Underway; DAM Underway Research Data; DATE/TIME; DEPTH, water; Echo intensity, relative; LATITUDE; LONGITUDE; Nodule Monit. II; Pings, averaged to a double ensemble value; Quality flag, current velocity; Seadatanet flag: Data quality control procedures according to SeaDataNet (2010); SO295; SO295_0_Underway-1; Sonne_2; Vessel mounted Acoustic Doppler Current Profiler [38 kHz]; VMADCP-38
    Type: Dataset
    Format: text/tab-separated-values, 1093070 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...