GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (2)
  • 2012  (2)
Document type
Years
  • 2010-2014  (2)
Year
  • 1
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Journal of Applied Ichthyology, WILEY-BLACKWELL PUBLISHING, 28(5), pp. 756-765, ISSN: 0175-8659
    Publication Date: 2019-07-17
    Description: The aim of this study was to determine the macro-parasitic infestation level of oysters from the southern German Bight focussing on copepods of the genus Mytilicola. Crassostrea gigas, Ostrea edulis and Mytilus edulis were collected at five locations: three nearshore sites in the eastern Wadden Sea and two offshore cultivation sites in the German Bight. To reveal seasonal variations one sampling site was investigated in winter and summer. At the nearshore sites, Mytilicola orientalis was regularly detected in C. gigas. Prevalences ranged between 32.3% and 45.1%, intensity between 3.0 ± 0.6 and 8.2 ± 1.5. Infestation rates of C. gigas within the southern German Bight decreased from west to east: Apparently, M. orientalis has started its range extension along the German coast with gradual retardation eastwards but generally followed the invasion route of its main host, the Pacific oyster. Interestingly, we detected not only M. intestinalis but also M. orientalis as an intestinal parasite in M. edulis, which has sofar not previously been described as host within this region. We conclude that M. orientalis is flexible in its host choice. Furthermore, in the eastern Wadden Sea infestation rates of oysters and mussels by copepods are similar. These results deviate from the patterns observed for the northern Wadden Sea in terms of infestation level and host specificity. No macro-parasites were found in oysters and mussels from the offshore sites. This absence can be considered as potentially beneficial for aquaculture activities in the open ocean in terms of stamina and physiological performance.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  EPIC3XXXII SCAR and Open Science Conference, Portland, USA, 2012-07-16-2012-07-19
    Publication Date: 2019-07-17
    Description: Antarctic and Arctic zooplankton species have developed very similar life strategies and energetic adaptations to the harsh environment via sophisticated modes of lipid accumulation. A very efficient biosynthesis, storage and utilization of lipids enable especially herbivorous species to buffer the pronounced seasonality of food supply in the polar oceans. Lipid levels usually peak at the end of the productive season in autumn and reach minimum levels in spring. In many species lipid deposits are not primarily used for maintenance during winter but are conserved to fuel reproductive processes at the end of the dark season. The dependence on seasonal primary production is also reflected by the respective lipid compositions. Detailed lipid analyses of dominant Antarctic and Arctic copepods revealed that the herbivorous Calanus and Calanoides species have developed the most complex lipid biochemical pathways. They biosynthesise large amounts of wax esters with long-chain monounsaturated fatty acids and alcohols (20:1, 22:1) as major components. In contrast, the Antarctic Calanus propinquus and C. simillimus synthesise primarily triacylglycerols consisting mainly of long-chain monounsaturated fatty acids with 22 and even 24 carbon atoms (2 major isomers), which is very unusual among plankton species. In contrast, the lipids of omnivorous and carnivorous taxa such as Metridia or Euchaeta are deficient in such long-chain fatty acids and alcohols, although their lipid reserves mainly consist of wax esters. Our investigations underscore that lipids are a key factor in high latitude ecosystems, especially for the lower trophic levels. The extremely lipid-rich herbivorous species ensure an efficient lipid-based energy transfer and represent high-calory food for fish and warm-blooded animals like birds and mammals.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...