GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 145 (1996), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The pathogenic Neisseria have exploited the processes of horizontal DNA transfer and genetic recombination as mechanisms for the generation of extensive protein variation and modulation of gene expression. Localized recombinations have been well documented in members of multigene families as have alterations in short repetitive sequences. Here we report an analysis of the chromosomal structure of a defined lineage of Neisseria gonorrhoeae strain MS 11 pilin variants. This study reveals the occurrence of large rearrangements, including the amplification of a 26 kb region and an inversion involving more than a third of the chromosome. Additionally, a restriction site polymorphism that correlates with pilin expression has been observed. These findings highlight the flexibility of the gonococcal genome.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 137 (1996), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract We previously identified and genetically characterized several factors essential for the natural competence of transformation in Neisseria gonorrhoeae. Here we analyse the sequential action of these factors and dissect the overall transformation process into three distinct steps, (i) the sequence-specific uptake of transforming DNA into a DNase-resistant state, (ii) the transfer of DNA to the cytosol and (iii) the processing and recombination of the incoming with the resident DNA. While two pilus-associated factors, PilE and PilC, were previously implicated in the early DNA uptake event, we show here that three competence factors unrelated to pilus biogenesis, ComA, ComL and Tpc, are not essential for DNA uptake and rather act in a subsequent step. The respective mutants, however, lack the characteristic nucleolytic processing observed with the incoming DNA in both wild-type and non-transformable RecA-deficient N. gonorrhoeae, indicating that they are blocked in the processing and/or the delivery of DNA to the cytoplasm. A hypothetical model proposing a sequential action of the known gonococcal competence factors is presented.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: We characterized a novel mutant phenotype (tetrapac, tpc) of Neisseria gonorrhoeae (Ngo) associated with a distinctive rough-colony morphology and bacterial growth in clusters of four. This phenotype, suggesting a defect in cell division, was isolated from a mutant library of Ngo MS11 generated with the phoA minitransposon TnMax4. The tpc mutant shows a 30% reduction in the overall murein hydrolase activity using Escherichia coli murein as substrate. Tetrapacs can be resolved by co-cultivation with wild-type Ngo, indicating that Tpc is a diffusible protein. Interestingly, Tpc is absolutely required for the natural transformation competence of piliated Ngo. Mutants in tpc grow normally, but show a ∼ 10-fold reduction in their ability to invade human epithelial cells. The tpc sequence reveals an open reading frame of ∼1 kb encoding a protein (Tpc) of 37kDa. The primary gene product exhibits an N-terminal leader sequence typical of lipoproteins, but palmitoylation of Tpc could not be demonstrated. The ribosomal binding site of tpc is immediately downstream of the translational stop codon of the folC gene coding for an enzyme involved in folic acid biosynthesis and one-carbon metabolism. The tpc gene is probably co-transcribed from the folC promoter and a promoter located within the folC gene. The latter promoter sequence shares significant homology with E. coli gearbox consensus promoters. All three mutant phenotypes, i.e. the cell separation defect, the transformation deficiency and the defect in cell invasion can be restored by complementation of the mutant with an intact tpc gene. To some extent the tcp phenotype is reminiscent of iap in Listeria, lytA in Streptococcus pneumoniae and lyt in Bacillus subtilis, all of which are considered to represent murein hydrolase defects.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: A novel peptidoglycan-linked lipoprotein (ComL) has been identified which is required for efficient transformation of Neisseria gonorrhoeae by species-related DNA. Although most mutations in comL appear to be lethal, transposon shuttle mutagenesis was successful in generating a single viable comL mutant of N. gonorrhoeae strain MS11. This mutant, N457, exhibits a cratered and crinkled colony morphology and grows slower than wild-type MS11. However, as indicated by electron microscopy, this retardation is due to a small bacterial size rather than to a decreased generation time of the mutant bacteria. Complementation of N457 with an intact comL gene via the Hermes shuttle system fully reconstitutes bacterial size, colony morphology, and transformation competence of the wild-type strain. comL is a single-copy gene and maps downstream of the previously described comA gene It is transcribed in the opposite direction, probably using the same transcriptional terminator. ComL has a predicted size of 29 kDa and is synthesized in Escherichia coli under the control of its native promoter, which is highly conserved with the E. coli promoter consensus sequence. The 5′ end of the coding sequence reveals a lipoprotein secretion signal shown to be functional by gene fusion with alkaline phosphatase (phoA′ ). In E. coli, cloned ComL can be labelled with [3H]-palmitic acid, thus demonstrating its lipoproteinaceous nature. Palmitoylated ComL appears to be covalently bound to the murein sacculus of E. coli and N. gonorrhoeae since it resists boiling in 4% sodium dodecyl sulphate and is released only by lysozyme treatment. Homologous counterparts of the comL gene are found in Neisseriameningitidis as well as in several non-pathogenic Neisseria species.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 250 (1996), S. 277-285 
    ISSN: 1617-4623
    Keywords: Key words Gonococcus ; Folic acid ; Dihydrofolate synthetase ; Folylpolyglutamate synthetase ; One-carbon metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The gene coding for folylpoly-(γ)-glutamate synthetase (FPGS)-dihydrofolate synthetase (DHFS) of Neisseria gonorrhoeae (Ngo) has been cloned by functional complementation of an Escherichia coli folC mutant (SF4). The sequence encodes a 224-residue protein of 46.4 kDa. It shows 46% identity to the E. coli FPGS-DHFS and 29% identity to the FPGS of Lactobacillus casei. Sequence comparisons between the three genes reveal regions of high homology, including ATP binding sites required for bifunctionality, all of which may be important for FPGS activity. In contrast to L. casei FPGS, the E. coli and Ngo enzymes share some additional regions which may be essential for DHFS activity. The products of Ngo folC and flanking genes were monitored by T7 promoter expression. Interestingly, deletion of the upstream folI gene, which encodes a 16.5 kDa protein, abolishes the capacity of folC to complement E. coli SF4 to the wild-type phenotype. The ability to complement can be restored by folI provided in trans. Unlike folC mutants, gonococcal folI mutants are viable and display no apparent phenotype. Thus, in contrast to E. coli, Ngo folC is expressed at a sufficiently high level from its own promoter, in the absence of FolI. This study provides the first insights into the genetic complexity of one-carbon metabolism in Ngo.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1617-4623
    Keywords: Plasmid vector ; Conjugation ; Generalized mutagenesis ; Homologous recombination ; Natural transformation competence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A versatile shuttle system has been developed for genetic complementation with cloned genes of transformable and non-transformableNeisseria mutants. By random insertion of a selectable marker into the conjugativeNeisseria plasmidptetM25.2, a site within this plasmid was identified that is compatible with plasmid replication and with conjugative transfer of plasmid. Regions flanking the permissive insertion site of ptetM25.2 were cloned inEscherichia coli and served as a basis for the construction of the Hermes vectors. Hermes vectors are composed of anE. coli replicon that does not support autonomous replication inNeisseria, e.g. ColE1, p15A, orori fd, fused with a shuttle consisting of a selectable marker and a multiple cloning site flanked by the integration region of ptetM25.2. Complementation of a non-transformableNeisseria strain involves a three-step process: (i) insertion of the desired gene into a Hermes vector; (ii) transformation of Hermes into aNeisseria strain containing ptetM25.2 to create a hybrid ptetM25.2 via gene replacement by the Hermes shuttle cassette; and (iii) conjugative transfer of the hybrid ptetM25.2 into the finalNeisseria recipient. Several applications for the genetic manipulation of pathogenicNeisseriae are described.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...