GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 21, No. 17_Supplement ( 2015-09-01), p. A23-A23
    Kurzfassung: Approximately 10% of B-ALLs harbor CRLF2 rearrangements and have a poor prognosis. Although these leukemias are addicted to JAK2 signaling, ATP-competitive type I JAK2 inhibitors have limited activity (Weigert et al. J Exp Med 2012). This may result from heterodimerization of JAK2 with other JAK family members (Koppikar et al. Nature 2012). Type II inhibitors bind JAK2 in the inactive conformation and may have non-cross resistance with type I inhibitors. In Ba/F3 cells dependent on CRLF2 and the gain-of-function allele JAK2 R683G, the type II JAK2 inhibitor NVP-CHZ868 was more potent (IC50 21nM) than the type I inhibitors NVP-BSK805 (IC50 443nM) and NVP-BVB808 (IC50 111nM). Unlike type I inhibitors, CHZ868 completely abrogated JAK2 and STAT5 phosphorylation. In addition, the JAK2 Y931C allele that confers 4-6-fold resistance to BSK805 and BVB808 did not affect the IC50 of CHZ868. We assessed in vivo efficacy of CHZ868 in mice transplanted with transgenic (CRLF2/JAK2 R683G/Cdkn2a-/- or CRLF2/JAK2 R683G/Pax5+/-/Ts1Rhr) or primary human CRLF2-rearranged B-ALLs. Mice treated for 5-6 days with CHZ868 (30mg/kg/day PO) had significant reductions in spleen size compared to control mice and complete loss of phospho-STAT5 in residual leukemia cells. In both murine leukemias and human xenografts, CHZ868 prolonged survival compared to controls (p & lt;0.001), but all mice ultimately became moribund from B-ALL. To study mechanisms of resistance to type II JAK2 inhibitors, we screened a randomly mutagenized JAK2 R683G library expressed in Ba/F3-CRLF2 cells for clones resistant to the type II inhibitor NVP-BBT594. All ( & gt;30) clones sequenced harbored the same JAK2 L884P mutation. Ba/F3 cells expressing CRLF2 with JAK2 R683G/L884P had 14-fold resistance to CHZ868 (R683G IC50 16nM; R683G/L884P IC50 231nM). JAK2 L884P is homologous to an EGFR L747P activating mutation (He et al. Clin Cancer Res 2012), which destabilizes the P-loop and C-helix portion of the kinase domain. Next-generation sequencing of JAK2 from splenocytes of mice that progressed on CHZ868 treatment did not identify L884P or other missense mutations at & gt;1% frequency, suggesting in vivo treatment failure was not due to JAK2 mutation. To improve CHZ868 efficacy, we tested for synergy with multiple chemotherapy agents in MHH-CALL4 cells, which harbor a CRLF2/IGH rearrangement and JAK2 I682F mutation. Among the tested agents, dexamethasone was highly synergistic with CHZ868. In mice transplanted with CRLF2/JAK2 R683G/Pax5+/-/Ts1Rhr murine B-ALL, a 14-day course of CHZ868 prolonged survival compared to vehicle (p & lt;0.0001) or dexamethasone (p & lt;0.01), and the combination prolonged survival beyond CHZ868 monotherapy (p & lt;0.0001). In summary, the type II JAK2 inhibitor CHZ868 potently kills JAK2-dependent B-ALL, overcomes genetic resistance to type I inhibitors, and synergizes with dexamethasone in vitro and in vivo. Thus, combination strategies using dexamethasone with type II JAK2 inhibitors merit testing in patients with relapsed/refractory, JAK2-dependent B-ALL. Citation Format: Loretta S. Li, Nadja Kopp, Shuo-Chieh Wu, Jordy Van Der Zwet, Jacob V. Layer, Oliver Weigert, Amanda L. Christie, Alexandra N. Christodoulou, Huiyun Liu, Akinori Yoda, Thomas Radimerski, David M. Weinstock. Type II JAK2 inhibitor NVP-CHZ868 has potent activity in JAK2-dependent B-cell acute lymphoblastic leukemias (B-ALLs) in vivo. [abstract]. In: Proceedings of the AACR Special Conference on Hematologic Malignancies: Translating Discoveries to Novel Therapies; Sep 20-23, 2014; Philadelphia, PA. Philadelphia (PA): AACR; Clin Cancer Res 2015;21(17 Suppl):Abstract nr A23.
    Materialart: Online-Ressource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2015
    ZDB Id: 1225457-5
    ZDB Id: 2036787-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Cancer Cell, Elsevier BV, Vol. 28, No. 1 ( 2015-07), p. 29-41
    Materialart: Online-Ressource
    ISSN: 1535-6108
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2015
    ZDB Id: 2074034-7
    ZDB Id: 2078448-X
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3567-3567
    Kurzfassung: GNB1 encodes a beta subunit (Gβ) of heterotrimeric G proteins, which mediate signals downstream of G protein coupled receptors (GPCRs). We isolated a somatic mutant of GNB1 (K89E) by functional screening of a cDNA library derived from a blastic plasmacytoid dendritic cell neoplasm (BPDCN). A search of cancer genome databases identified recurrent mutations in GNB1 and the highly related protein GNB2. GNB1/2 K89E/T were found in B cell acute lymphoblastic leukemia (B-ALL) (1 case), follicular lymphoma (1) and myelodysplastic syndrome (MDS) (1) as well as BPDCN (1). Interestingly GNB1 K57E/T mutations were found only in myeloid diseases: [acute myeloid leukemia (2), atypical CML (2), polycythemia vera (1) and MDS (6)], while GNB1 I80N/T were found predominantly in B cell diseases [CLL (2), FL (2), DLBCL (1) and MDS (1)] . These mutated codons are all located on the GNB1 protein surface that is critical for interactions between Gβ and alpha subunits (Gα) or downstream effectors. Immunoprecipitation followed by mass spectrometry demonstrated that GNB1 K57E, I80T and K89E mutants failed to bind Gα, including GNAI2/3, GNA11/Q and GNA13 that are normally bound by wild-type (WT) GNB1. All mutations affecting these codons promoted cytokine-independent growth of human TF1 myeloid cells or mouse BaF3 lymphoid cells with activation of MEK/ERK and mTOR/PI3K pathways. Pertussis toxin treatment did not affect GNB1-dependent ERK activation or cell growth, implying a Gα-independent pathway. To investigate the function of GNB1 mutations in vivo, we performed a mouse bone marrow transplantation (BMT) experiment using wild-type and Cdkn2a-deficient donors. Loss of the cell cycle regulator CDKN2A is common in BPDCN, B-ALL, and several other hematologic malignancies. Bone marrow cells were isolated from 5-FU treated donor mice and infected with retrovirus expressing GNB1 WT, K57E, I80T or K89E. Transplantation of GNB1 mutant-expressing Cdkn2a-deficient bone marrow resulted in myeloid dendritic cell neoplasms that were CD11b+, CD11c+, CD19-, B220-, and CD3-. GNB1 mutants did not induce tumors in WT bone marrow after 12 months of observation suggesting that GNB1 requires additional cooperating mutations such as Cdkn2a loss. We performed the same BMT experiment using Cdkn2a-deficient bone morrow cells without 5-FU pretreatment. We found thatGNB1 I80T and K89E mutants induced a progenitor B cell ALL (CD11b-, CD11c-, CD19+, CD3-, TdT+). These data suggest that GNB1 mutations can promote tumorigenesis in more than one cell lineage, as observed in patients. In vivo treatment of the myeloid neoplasm with the dual PI3K/mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, we noted that GNB1 mutations co-occurred with oncogenic kinase alterations, including BCR/ABL, JAK2 V617F and BRAF V600K. Co-expression of patient-derived GNB1 alleles with the mutant kinases resulted in relative resistance to treatment with the corresponding kinase inhibitor in each context. Thus, GNB1 and GNB2 mutations confer transformation and targeted therapy resistance across a range of human tumors and may be targetable with inhibitors of PI3K/mTOR signaling. Disclosures Gotlib: Novartis Pharmaceuticals Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding, Travel Support Other. Deininger:BMS, Novartis, Celgene, Genzyme, Gilead: Research Funding; BMS, ARIAD, Novartis, Incyte, Pfizer: Advisory Board, Advisory Board Other; BMS, ARIAD, Novartis, Incyte, Pfizer: Consultancy. Tyner:Constellation Pharmaceuticals: Research Funding.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2014
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2015-1), p. 71-75
    Materialart: Online-Ressource
    ISSN: 1078-8956 , 1546-170X
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2015
    ZDB Id: 1484517-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 433-433
    Kurzfassung: Our goal is to identify oncogenic loci in regions of recurrent DNA copy number alterations in cancer. Constitutional trisomy 21 (Down syndrome) carries a 20-fold increased risk of B-ALL, and chr.21 gains are the most common acquired aneuploidy in B-ALL. Interstitial amplification in the chr.21q22 region (iAMP21) is also a recurrent finding in B-ALL and carries a poor prognosis. However, the gene(s) on chr.21 responsible for this association remain unclear. We studied the Ts1Rhr mouse, which carries germline triplication of 31 genes homologous to human chr.21q22. Chr.21q22 triplication was sufficient to promote B cell autonomous self-renewal and maturation defects, and cooperated with BCR-ABL or CRLF2 with JAK2 R683G to accelerate leukemogenesis. Chr.21q22 triplication also resulted in histone H3K27 hypomethylation at gene promoters, and the expression signature of triplicated B cells was enriched for genes targeted by polycomb repressor complex 2 (PRC2), which trimethylates H3K27. Thus, chr.21q22 triplication may deregulate B cell development by causing H3K27 hypomethylation at genes critical for progenitor cell growth. In support of this hypothesis, pharmacologic inhibition of PRC2 function was sufficient to confer self-renewal in wild-type B cells, while inhibition of H3K27 demethylases blocked self-renewal induced by chr.21q22 triplication. In three independent B-ALL cohorts, PRC2/H3K27 gene signatures distinguished leukemias with +21 from those without, validating the same biology in human disease. One of the 31 triplicated genes, HMGN1, encodes a nucleosome binding protein known to modulate chromatin structure and facilitate transcriptional activation. When we overexpressed HMGN1 in BaF3 proB cells, H3K27me3 decreased proportionally to the level of overexpression. We next knocked down each of the 31 triplicated genes with lentivirally-expressed shRNAs (5 per gene) and assessed the effects on growth of Ts1Rhr and wild-type primary B cells. Strikingly, Hmgn1 was the top scoring gene and all 5 hairpins targeting Hmgn1 were depleted in the assay. Finally, we studied transgenic mice (HMGN1_OE) that overexpress human HMGN1 (∼2-fold total overexpression). HMGN1_OE mice had a defect in B cell maturation, increased proB colony forming capacity, and a transcriptional signature overlapping with that of triplication of all 31 Ts1Rhr genes. In a bone marrow transplant model driven by BCR-ABL, recipients of HMGN1_OE bone marrow developed B-ALL with decreased latency (median 33 days vs not reached) and increased penetrance (17/18 vs 4/17 mice died by 80 days; leukemia-free survival difference P & lt;0.001) compared to recipients of wild-type bone marrow. These data indicate that HMGN1 is a B-ALL oncogene, and therapies targeting HMGN1 or the downstream effects of HMGN1 overexpression on epigenetic histone modifications may be effective in B-ALL with copy number gains involving chr.21q22. Citation Format: Andrew A. Lane, Bjoern Chapuy, Charles Y. Lin, Trevor Tivey, Hubo Li, Elizabeth Townsend, Diederik van Bodegom, Tovah A. Day, Shuo-Chieh Wu, Huiyun Liu, Akinori Yoda, Gabriela Alexe, Anna Schinzel, Timothy J. Sullivan, Sebastien Malinge, Jordan Taylor, Kimberly Stegmaier, Jacob Jaffe, Michael Bustin, Geertruy te Kronnie, Shai Izraeli, Marian Harris, Kristen Stevenson, Donna Neuberg, Lewis B. Silverman, Steven E. Sallan, James E. Bradner, William C. Hahn, John D. Crispino, David Pellman, David M. Weinstock. Triplication of HMGN1 promotes B cell acute lymphoblastic leukemia (B-ALL) through suppression of H3K27me3. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 433. doi:10.1158/1538-7445.AM2014-433
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2014
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 12, No. 11_Supplement ( 2013-11-01), p. PR07-PR07
    Kurzfassung: Although next-generation sequencing can delineate the genetic alterations within a primary tumor specimen, it can be difficult to distinguish the small number of driver mutations from the large number of passenger mutations. To overcome this issue, we developed a system for identifying oncogenic alterations directly from tumor cells. In this system, retroviral cDNA libraries built from cancer cell lines and directly from primary cancer samples are transduced into BaF3 cells, an IL3-dependent B cell line. Transformation by oncogenes promotes IL3-independent survival, allowing for the isolation of individual transformed clones and sequencing of the integrated cDNA. In the past, we identified CRLF2 as a novel oncogene in acute lymphoblastic leukemia (Yoda et al. PNAS 2010). We have improved the method and demonstrated 100% sensitivity for isolating well-characterized oncogenes, including EGFR, HER2, RAS and ALK (Shindoh et al. PLoS One 2012). Recently, we isolated a mutated GNB1 K89E allele from a cDNA library generated from a primary blastic plasmacytoid dendritic cell neoplasm (BPDCN). BPDCN is a rare and aggressive leukemia with a dismal prognosis. GNB1 encodes the beta subunit of the heterotrimeric G-protein, a binding complex that transduces signals from G-protein coupled receptors to multiple downstream pathways. Gain-of-function mutations have been reported in alpha subunits of the G-protein, however, the contributions of beta subunits to cancer remains undefined. To investigate downstream signaling from GNB1 K89E, we performed gene expression profiling and mass spectrometry (MS)-based phosphoproteomics and found significant activation of RAS/MAPK and PI3K/AKT pathways in GNB1 K89E-expressing cells compared to isogenic cells expressing wild-type GNB1. To target GNB1 K89E signaling, we screened kinase inhibitors using a multiplex panel of small molecules and found selective sensitivity of GNB1 K89E cells to MEK and pan-PI3-kinase inhibitors. Next, we transduced GNB1 alleles into bone marrow cells from Cdkn2a-deficient mice and transplanted into wild-type recipient mice. Within 4 months after transplantation, all mice (n=10) that received bone marrow transduced with GNB1 K89E developed a lethal dendritic cell malignancy, confirming the transforming effects of GNB1 K89E in vivo. A search of published cancer mutations identified four cases with GNB1 I80T/N in chronic lymphocytic leukemia or B-cell lymphomas, five cases with GNB1 K57E/T in myeloid malignancies, one case of GNB1 K89E in acute lymphoblastic leukemia, and two cases with GNB2 M101T/V in ovarian cancer. All of these alleles promoted GM-CSF-independent growth in human TF1 cells. Interestingly, the mutated codons are all located on the GNB1 molecular surface that is critical for interactions between GNB1 and both alpha subunits and downstream effectors. Immunoprecipitation followed by MS demonstrated that GNB1 K89E and I80T mutants failed to bind inhibitory G alpha subunits GNAI2 and GNAI3 as well as GNA11 that are bound by wild-type GNB1. Thus, gain-of-function mutations in G-protein beta subunits occur across a broad range of malignancies, can drive in vivo transformation, and activate targetable downstream kinases by modifying essential interactions with partner proteins. Citation Information: Mol Cancer Ther 2013;12(11 Suppl):PR07. Citation Format: Akinori Yoda, Guillaume Adelmant, Nobuaki Shindoh, Bjoern Chapuy, Yuka Yoda, Oliver Weigert, Nadja Kopp, Shuo-Chieh Wu, Sunhee S. Kim, Huiyun Liu, Trevor Tivey, Jeffrey W. Tyner, Jason Gotlib, Michael W. Deininger, Shannon Turley, Jarrod A. Marto, Andrew A. Lane, David M. Weinstock. Novel oncogenic mutations in the beta subunit of heteromeric G-proteins identified by functional cDNA library screening. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr PR07.
    Materialart: Online-Ressource
    ISSN: 1535-7163 , 1538-8514
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2013
    ZDB Id: 2062135-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3713-3713
    Kurzfassung: Approximately 10% of B-ALLs harbor CRLF2 rearrangements, which may portend a poor prognosis. Although these leukemias are addicted to JAK2 signaling, ATP-competitive type I JAK2 inhibitors have limited activity in vitro or in vivo (Weigert et al. J Exp Med 2012). This may result from heterodimerization of JAK2 with other JAK family members (Koppikar et al. Nature 2012). Type II inhibitors bind JAK2 in the inactive conformation, which may overcome this resistance. When assayed in MHH-CALL4 cells harboring a CRLF2/IGH rearrangement and JAK2 I682F mutation, the type II JAK2 inhibitors NVP-BBT594 and NVP-CHZ868 were 10-35-fold more potent than the type I JAK2 inhibitors NVP-BSK805 and NVP-BVB808. Similarly, in Ba/F3 cells dependent on CRLF2 and the gain-of-function allele JAK2 R683G, the IC50 for CHZ868 was 5-20-fold lower than the IC50s for BSK805 and BVB808. Unlike type I inhibitors, which induce paradoxical hyperphosphorylation of JAK2, CHZ868 completely blocks JAK2 and STAT5 phosphorylation. In addition, the JAK2 Y931C allele that confers 4-6-fold resistance to BSK805 and BVB808 did not alter sensitivity to CHZ868. CHZ868 abrogates STAT5 phosphorylation in Ba/F3 cells expressing CRLF2 with JAK2 R683G/Y931C while BVB808 does not. CHZ868 is the first type II JAK2 inhibitor amenable to in vivo use. We assessed its efficacy in mice transplanted with transgenic (CRLF2/JAK2 R683G/Cdkn2a-/- or CRLF2/JAK2 R683G/Pax5+/-/Ts1Rhr) or primary human CRLF2-rearranged B-ALLs. Splenocytes from patient-derived xenografts (PDXs) treated with CHZ868 in vivo for 3 days are more primed for apoptosis as demonstrated by a 2-6-fold EC50 reduction for PUMA permeabilizing activity compared to vehicle. Transcriptional profiling of splenocytes from CHZ868-treated PDXs revealed downregulation of critical survival pathways including E2F1, STAT3, and AKT-mediated signaling. Of note, 2 of the most downregulated genes are STAT targets, PIM1 and Myc. Mice treated for 5-6 days with CHZ868 had significant reductions in spleen size and complete loss of phospho-STAT5 in residual leukemia cells. In both murine leukemias and human xenografts, CHZ868 prolonged survival compared to controls (p 〈 0.001). BH3 profiling of splenocytes from PDXs treated until moribund showed a 2-4-fold increase in the EC50 for BIM compared to vehicle, consistent with decreased priming for apoptosis in the relapsed setting. To study mechanisms of resistance to type II JAK2 inhibitors, we screened a randomly mutagenized JAK2 R683G library expressed in Ba/F3-CRLF2 cells for clones resistant to BBT594. All 〉 30 clones sequenced harbored the same JAK2 L884P mutation. Ba/F3 cells expressing CRLF2 with JAK2 R683G/L884P displayed cross-resistance to CHZ868, while sensitivity to type I inhibitors was not affected. Structural modeling of the JAK2 JH1 domain suggested that L884P alters the binding pocket for type II inhibitors. JAK2 L884P is homologous to an EGFR L747P activating mutation, which destabilizes the P-loop and C-helix portion of the kinase domain (He et al. Clin Cancer Res 2012). The fact that L884P was reported in two B-ALL patients lacking additional JAK2 mutations (Torra et al. Blood (ASH Annual Meeting Abstracts) 2010) raised the possibility it was also an activating mutation. We confirmed L884P is an activating allele, as Ba/F3 cells expressing CRLF2, IL7R, and JAK2 L884P proliferated in the absence of TSLP ligand. To improve CHZ868 efficacy, we tested for synergy with multiple chemotherapy agents currently used in B-ALL treatment. Dexamethasone was the most highly synergistic with CHZ868 in MHH-CALL4 cells. To assess the combination in vivo, we treated mice transplanted with CRLF2/JAK2 R683G/Pax5+/-/Ts1Rhr murine B-ALL with vehicle, CHZ868, dexamethasone, or CHZ868 + dexamethasone for 14 days post engraftment. CHZ868 treatment prolonged survival compared to vehicle (p 〈 0.0001) or dexamethasone (p 〈 0.01), and the combination prolonged survival beyond CHZ868 monotherapy (p 〈 0.0001). In summary, the type II JAK2 inhibitor CHZ868 potently kills JAK2-dependent B-ALL and overcomes genetic resistance to type I inhibitors. CHZ868 prolongs survival in murine transgenic and human xenograft models and synergizes with dexamethasone in vivo. Thus, combination strategies using dexamethasone with type II JAK2 inhibitors merit testing in patients with relapsed or refractory JAK2-dependent B-ALL. Disclosures Hofmann: Novartis Institutes for BioMedical Research: Employment. Baffert:Novartis: Employment. Vangrevelinghe:Novartis Institutes for BioMedical Research: Employment. Gaul:Novartis: Employment. Radimerski:Novartis: Employment. Weinstock:Novartis: Consultancy, Research Funding.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2014
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 46, No. 6 ( 2014-6), p. 618-623
    Materialart: Online-Ressource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2014
    ZDB Id: 1494946-5
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 2510-2510
    Kurzfassung: To identify new oncogene alleles directly from primary tumor specimens, we generate and screen cDNA libraries from patient samples for gain-of-function alterations that can substitute for cytokine signaling in cytokine-dependent cells. Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive leukemia of plasmacytoid dendritic cells with a dismal prognosis. No driver oncogenes have been identified in cases of BPDCN. Screening of a cDNA library generated from a BPDCN resulted in multiple cytokine-independent clones that expressed a full-length transcript of GNB1 with a K89E mutation. GNB1 encodes a beta subunit of the heterotrimeric G-protein, a binding complex that transduces signals from G-protein coupled receptors to multiple downstream pathways. Gain-of-function mutations have been reported in alpha subunits of the G-protein, including GNAQ/GNA11 in uveal melanoma and GNAS in pituitary tumors, however, the contributions of beta subunits to cancer remains undefined. To investigate downstream signaling from GNB1 K89E, we performed gene expression profiling and mass spectrometry (MS)-based phosphoproteomics and found significant activation of RAS/MAPK and PI3K/AKT pathways in GNB1 K89E-expressing cells compared to isogenic cells expressing wild-type GNB1. ERK and AKT activation by GNB1 K89E were confirmed by western blotting. To target GNB1 K89E signaling, we screened kinase inhibitors using a multiplex assay of small molecules and found selective sensitivity of GNB1 K89E cells to MEK and pan-PI3-kinase inhibitors. To assay the transforming effects of GNB1 K89E in vivo, we transduced GNB1 (wild-type or K89E) into bone marrow from Cdkn2a-deficient donors after 5-FU treatment and transplanted into wild-type recipients. We opted to utilize Cdkn2a-deficient donors as the loss of CDKN2A is common in cases of BPDCN. Within 4 months after transplantation, all mice (n=10) that received bone marrow transduced with GNB1 K89E developed a lethal malignancy characterized by pancytopenia and massive hepatosplenomegaly. Spleens were infiltrated by large, spindly cells with extensive dendritic projections, as well as extensive fibrosis that completely effaced the normal splenic architecture. The cells were negative for T-cell (CD2, CD3) and B-cell (CD19, B220) markers but positive for the dendritic cell/macrophage markers MAC-2 and MAC-3. Further characterization by flow cytometry demonstrated that the cells infiltrating the spleen were CD8, CD103, MHC class II, CD26, FLT3 and CD11c positive, consistent with neoplastic dendritic cells. Serial transplantation of splenic cells from five different GNB1 K89E-transplanted mice into secondary wild-type recipients resulted in 100% fatality within 50 days. We searched published datasets from exome, transcriptome and whole genome sequencing of hematologic malignancies for GNB1 mutations. We identified one case of K89E in B-cell acute lymphoblastic leukemia (ALL), four cases with I80T/N in chronic lymphocytic leukemia or B-cell lymphomas, six cases with K57E/T in myeloid neoplasms, and D76G in T-cell ALL. Expression of any of these alleles but not wild-type GNB1 was sufficient to promote cytokine-independent growth of human TF1 cells. The published structure of GNB1 (Ford et al. Science 1998) reported a small number of residues, including K57, I80 and K89 that mediate interactions with both G-alpha subunits and effector proteins. In fact, affinity purification followed by MS using tagged GNB1 (wild-type, I80T and K89E) demonstrated that, unlike wild-type GNB1, the GNB1 mutants fail to bind distinct Gα subunits. The repertoire of protein interactors, which includes potential G protein effectors, also differed between different GNB1 alleles. Thus, gain-of-function mutations in GNB1 occur across a broad range of hematologic malignancies, modify essential interaction G-protein subunit interactions, can drive in vivo transformation, and activate targetable downstream kinases. Disclosures: Tyner: Incyte Corporation: Research Funding.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2013
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...