GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2012
    In:  Ocean Dynamics Vol. 62, No. 10-12 ( 2012-12), p. 1457-1470
    In: Ocean Dynamics, Springer Science and Business Media LLC, Vol. 62, No. 10-12 ( 2012-12), p. 1457-1470
    Type of Medium: Online Resource
    ISSN: 1616-7341 , 1616-7228
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2063267-8
    detail.hit.zdb_id: 201122-0
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Environmental Science, Frontiers Media SA, Vol. 8 ( 2020-11-10)
    Type of Medium: Online Resource
    ISSN: 2296-665X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2741535-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Canadian Science Publishing ; 2011
    In:  Canadian Journal of Fisheries and Aquatic Sciences Vol. 68, No. 3 ( 2011-03), p. 426-443
    In: Canadian Journal of Fisheries and Aquatic Sciences, Canadian Science Publishing, Vol. 68, No. 3 ( 2011-03), p. 426-443
    Abstract: We employed a suite of coupled models to estimate the influence of environmental variability in the North Sea on early life stages of sprat ( Sprattus sprattus ), a small pelagic clupeid, and Atlantic cod ( Gadus morhua ), a demersal gadoid. Environmentally driven changes in bottom-up processes were projected to impact the survival and growth of eggs and larvae of these marine fish species in markedly different ways. We utilized a spatially explicit, individual-based model (IBM) to estimate larval fish survival and a 3D ecosystem model (ECOSMO) to provide variable prey fields. The model was applied to each of 3 years (1990, 1992, 1996) specifically characterized by interannual differences in water temperature in late winter and spring. Our results indicated that an important mechanism connecting environmental factors to larval fish survival was the match–mismatch dynamics of first-feeding larvae and their prey, which was species-specific because of (i) differences in the timing and locations of spawning, (ii) the duration of endogenously feeding life stages, and (iii) prey thresholds required for larval survival. Differences in transport processes also played an important role for the potential survival of larvae of both species.
    Type of Medium: Online Resource
    ISSN: 0706-652X , 1205-7533
    Language: English
    Publisher: Canadian Science Publishing
    Publication Date: 2011
    detail.hit.zdb_id: 7966-2
    detail.hit.zdb_id: 1473089-3
    SSG: 21,3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 2021
    In:  Continental Shelf Research Vol. 231 ( 2021-12), p. 104582-
    In: Continental Shelf Research, Elsevier BV, Vol. 231 ( 2021-12), p. 104582-
    Type of Medium: Online Resource
    ISSN: 0278-4343
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2025704-1
    detail.hit.zdb_id: 780256-0
    SSG: 13
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Global Change Biology, Wiley, Vol. 20, No. 7 ( 2014-07), p. 2124-2139
    Abstract: Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3‐D coupled physical‐biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate‐change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas ( NE A tlantic, B arents S ea, B altic S ea, B lack S ea, B ay of B iscay, A driatic S ea, A egean S ea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in A tlantic M argin and N orth S ea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the B arents, B altic and B lack S eas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom‐up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the A rctic and A ntarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Marine and Coastal Fisheries, Wiley, Vol. 2, No. 1 ( 2010-01), p. 115-130
    Abstract: There is growing interest in models of marine ecosystems that deal with the effects of climate change through the higher trophic levels. Such end‐to‐end models combine physicochemical oceanographic descriptors and organisms ranging from microbes to higher‐trophic‐level (HTL) organisms, including humans, in a single modeling framework. The demand for such approaches arises from the need for quantitative tools for ecosystem‐based management, particularly models that can deal with bottom‐up and top‐down controls that operate simultaneously and vary in time and space and that are capable of handling the multiple impacts expected under climate change. End‐to‐end models are now feasible because of improvements in the component submodels and the availability of sufficient computing power. We discuss nine issues related to the development of end‐to‐end models. These issues relate to formulation of the zooplankton submodel, melding of multiple temporal and spatial scales, acclimation and adaptation, behavioral movement, software and technology, model coupling, skill assessment, and interdisciplinary challenges. We urge restraint in using end‐to‐end models in a true forecasting mode until we know more about their performance. End‐to‐end models will challenge the available data and our ability to analyze and interpret complicated models that generate complex behavior. End‐to‐end modeling is in its early developmental stages and thus presents an opportunity to establish an open‐access, community‐based approach supported by a suite of true interdisciplinary efforts.
    Type of Medium: Online Resource
    ISSN: 1942-5120 , 1942-5120
    Language: English
    Publisher: Wiley
    Publication Date: 2010
    detail.hit.zdb_id: 2483227-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2013
    In:  Journal of Marine Systems Vol. 119-120 ( 2013-6), p. 30-49
    In: Journal of Marine Systems, Elsevier BV, Vol. 119-120 ( 2013-6), p. 30-49
    Type of Medium: Online Resource
    ISSN: 0924-7963
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    detail.hit.zdb_id: 1483106-5
    detail.hit.zdb_id: 1041191-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Water, MDPI AG, Vol. 12, No. 3 ( 2020-03-14), p. 817-
    Abstract: Using the North Sea as a case scenario, a combined three-dimensional hydrodynamic-biogeochemical-pollutant model was applied for simulating the seasonal variability of the distribution of hydrophobic chemical pollutants in a marine water body. The model was designed in a nested framework including a hydrodynamic block (Hamburg Shelf Ocean Model (HAMSOM)), a biogeochemical block (Oxygen Depletion Model (OxyDep)), and a pollutant-partitioning block (PolPar). Pollutants can be (1) transported via advection and turbulent diffusion, (2) get absorbed and released by a dynamic pool of particulate and dissolved organic matter, and (3) get degraded. Our model results indicate that the seasonality of biogeochemical processes, including production, sinking, and decay, favors the development of hot spots with particular high pollutant concentrations in intermediate waters of biologically highly active regions and seasons, and it potentially increases the exposure of feeding fish to these pollutants. In winter, however, thermal convection homogenizes the water column and destroys the vertical stratification of the pollutant. A significant fraction of the previously exported pollutants is then returned to the water surface and becomes available for exchange with the atmosphere, potentially turning the ocean into a secondary source for pollutants. Moreover, we could show that desorption from aging organic material in the upper aphotic zone is expected to retard pollutants transfer and burial into sediments; thus, it is considerably limiting the effectiveness of the biological pump for pollutant exports.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Marine Science Vol. 8 ( 2021-6-4)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-6-4)
    Abstract: The Elbe estuary is a substantially engineered tidal water body that receives high loads of organic matter from the eutrophied Elbe river. The organic matter entering the estuary at the tidal weir is dominated by diatom populations that collapse in the deepened freshwater reach. Although the estuary’s freshwater reach is considered to manifest vertically homogenous density distribution (i.e., to be well-mixed), several indicators like trapping of particulate organic matter, near-bottom oxygen depletion and ammonium accumulation suggest that the vertical exchange of organic particles and dissolved oxygen is weakened at least temporarily. To better understand the causal links between the hydrodynamics and the oxygen and nutrient cycling in the deepened freshwater reach of the Elbe estuary, we establish a three-dimensional coupled hydrodynamical-biogeochemical model. The model demonstrates good skill in simulating the variability of the physical and biogeochemical parameters in the focal area. Coupled simulations reveal that this region is a hotspot of the degradation of diatoms and organic matter transported from the shallow productive upper estuary and the tidal weir. In summer, the water column weakly stratifies when at the bathymetric jump warmer water from the shallow upper estuary spreads over the colder water of the deepened mid reaches. Enhanced thermal stratification also occurs also in the narrow port basins and channels. Model results show intensification of the particle trapping due to the thermal gradients. The stratification also reduces the oxygenation of the near-bottom region and sedimentary layer inducing oxygen depletion and accumulation of ammonium. The study highlights that the vertical resolution is important for the understanding and simulation of estuarine ecological processes, because even weak stratification impacts the cycling of nutrients via modulation of the vertical mixing of oxygen, particularly in deepened navigation channels and port areas.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Marine Science Vol. 8 ( 2021-10-28)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-10-28)
    Abstract: Predicting the ambient environmental conditions in the coming several years to one decade is of key relevance for elucidating how deep-sea habitats, like for example sponge habitats, in the North Atlantic will evolve under near-future climate change. However, it is still not well known to what extent the deep-sea environmental properties can be predicted in advance. A regional downscaling prediction system is developed to assess the potential predictability of the North Atlantic deep-sea environmental factors. The large-scale climate variability predicted with the coupled Max Planck Institute Earth System Model with low-resolution configuration (MPI-ESM-LR) is dynamically downscaled to the North Atlantic by providing surface and lateral boundary conditions to the regional coupled physical-ecosystem model HYCOM-ECOSMO. Model results of two physical fields (temperature and salinity) and two biogeochemical fields (concentrations of silicate and oxygen) over 21 sponge habitats are taken as an example to assess the ability of the downscaling system to predict the interannual to decadal variations of the environmental properties based on ensembles of retrospective predictions over the period from 1985 to 2014. The ensemble simulations reveal skillful predictions of the environmental conditions several years in advance with distinct regional differences. In areas closely tied to large-scale climate variability and ice dynamics, both the physical and biogeochemical fields can be skillfully predicted more than 4 years ahead, while in areas under strong influence of upper oceans or open boundaries, the predictive skill for both fields is limited to a maximum of 2 years. The simulations suggest higher predictability for the biogeochemical fields than for the physical fields, which can be partly attributed to the longer persistence of the former fields. Predictability is improved by initialization in areas away from the influence of Mediterranean outflow and areas with weak coupling between the upper and deep oceans. Our study highlights the ability of the downscaling regional system to predict the environmental variations at deep-sea benthic habitats on time scales of management relevance. The downscaling system therefore will be an important part of an integrated approach towards the preservation and sustainable exploitation of the North Atlantic benthic habitats.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...