GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Chemosensors, MDPI AG, Vol. 10, No. 11 ( 2022-11-05), p. 460-
    Abstract: Total white blood cells count is an important diagnostic parameter in both human and veterinary medicines. State-of-the-art is performed by flow cytometry combined with light scattering or impedance measurements. Spectroscopy point-of-care has the advantages of miniaturization, low sampling, and real-time hemogram analysis. While white blood cells are in low proportions, while red blood cells and bilirubin dominate spectral information, complicating detection in blood. We performed a feasibility study for the direct detection of white blood cells counts in canine blood by visible-near infrared spectroscopy for veterinary applications, benchmarking current chemometrics techniques (similarity, global and local partial least squares, artificial neural networks and least-squares support vector machines) with self-learning artificial intelligence, introducing data augmentation to overcome the hurdle of knowledge representativity. White blood cells count information is present in the recorded spectra, allowing significant discrimination and equivalence between hemogram and spectra principal component scores. Chemometrics methods correlate white blood cells count to spectral features but with lower accuracy. Self-Learning Artificial Intelligence has the highest correlation (0.8478) and a small standard error of 6.92 × 109 cells/L, corresponding to a mean absolute percentage error of 25.37%. Such allows the accurate diagnosis of white blood cells in the range of values of the reference interval (5.6 to 17.8 × 109 cells/L) and above. This research is an important step toward the existence of a miniaturized spectral point-of-care hemogram analyzer.
    Type of Medium: Online Resource
    ISSN: 2227-9040
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704218-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Agriculture Vol. 12, No. 5 ( 2022-05-22), p. 730-
    In: Agriculture, MDPI AG, Vol. 12, No. 5 ( 2022-05-22), p. 730-
    Abstract: Proximity sensing approaches with a wide array of sensors available for use in precision viticulture contexts can nowadays be considered both well-know and mature technologies. Still, several in-field practices performed throughout different crops rely on direct visual observation supported on gained experience to assess aspects of plants’ phenological development, as well as indicators relating to the onset of common plagues and diseases. Aiming to mimic in-field direct observation, this paper presents VineInspector: a low-cost, self-contained and easy-to-install system, which is able to measure microclimatic parameters, and also to acquire images using multiple cameras. It is built upon a stake structure, rendering it suitable for deployment across a vineyard. The approach through which distinguishable attributes are detected, classified and tallied in the periodically acquired images, makes use of artificial intelligence approaches. Furthermore, it is made available through an IoT cloud-based support system. VineInspector was field-tested under real operating conditions to assess not only the robustness and the operating functionality of the hardware solution, but also the AI approaches’ accuracy. Two applications were developed to evaluate VineInspector’s consistency while a viticulturist’ assistant in everyday practices. One was intended to determine the size of the very first grapevines’ shoots, one of the required parameters of the well known 3–10 rule to predict primary downy mildew infection. The other was developed to tally grapevine moth males captured in sex traps. Results show that VineInspector is a logical step in smart proximity monitoring by mimicking direct visual observation from experienced viticulturists. While the latter traditionally are responsible for a set of everyday practices in the field, these are time and resource consuming. VineInspector was proven to be effective in two of these practices, performing them automatically. Therefore, it enables both the continuous monitoring and assessment of a vineyard’s phenological development in a more efficient manner, making way to more assertive and timely practices against pests and diseases.
    Type of Medium: Online Resource
    ISSN: 2077-0472
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2651678-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Agronomy, MDPI AG, Vol. 14, No. 3 ( 2024-02-28), p. 493-
    Abstract: Early and accurate disease diagnosis is pivotal for effective phytosanitary management strategies in agriculture. Hyperspectral sensing has emerged as a promising tool for early disease detection, yet challenges remain in effectively harnessing its potential. This study compares parametric spectral Vegetation Indices (VIs) and a nonparametric Gaussian Process Classification based on an Automated Spectral Band Analysis Tool (GPC-BAT) for diagnosing plant bacterial diseases using hyperspectral data. The study conducted experiments on tomato plants in controlled conditions and kiwi plants in field settings to assess the performance of VIs and GPC-BAT. In the tomato experiment, the modeling processes were applied to classify the spectral data measured on the healthy class of plants (sprayed with water only) and discriminate them from the data captured on plants inoculated with the two bacterial suspensions (108 CFU mL−1). In the kiwi experiment, the standard modeling results of the spectral data collected on nonsymptomatic plants were compared to the ones obtained using symptomatic plants’ spectral data. VIs, known for their simplicity in extracting biophysical information, successfully distinguished healthy and diseased tissues in both plant species. The overall accuracy achieved was 63% and 71% for tomato and kiwi, respectively. Limitations were observed, particularly in differentiating specific disease infections accurately. On the other hand, GPC-BAT, after feature reduction, showcased enhanced accuracy in identifying healthy and diseased tissues. The overall accuracy ranged from 70% to 75% in the tomato and kiwi case studies. Despite its effectiveness, the model faced challenges in accurately predicting certain disease infections, especially in the early stages. Comparative analysis revealed commonalities and differences in the spectral bands identified by both approaches, with overlaps in critical regions across plant species. Notably, these spectral regions corresponded to the absorption regions of various photosynthetic pigments and structural components affected by bacterial infections in plant leaves. The study underscores the potential of hyperspectral sensing in disease diagnosis and highlights the strengths and limitations of VIs and GPC-BAT. The identified spectral features hold biological significance, suggesting correlations between bacterial infections and alterations in plant pigments and structural components. Future research avenues could focus on refining these approaches for improved accuracy in diagnosing diverse plant–pathogen interactions, thereby aiding disease diagnosis. Specifically, efforts could be directed towards adapting these methodologies for early detection, even before symptom manifestation, to better manage agricultural diseases.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2024
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Agronomy, MDPI AG, Vol. 10, No. 6 ( 2020-06-16), p. 855-
    Abstract: Traditionally farmers have used their perceptual sensorial systems to diagnose and monitor their crops health and needs. However, humans possess five basic perceptual systems with accuracy levels that can change from human to human which are largely dependent on the stress, experience, health and age. To overcome this problem, in the last decade, with the help of the emergence of smartphone technology, new agronomic applications were developed to reach better, cost-effective, more accurate and portable diagnosis systems. Conventional smartphones are equipped with several sensors that could be useful to support near real-time usual and advanced farming activities at a very low cost. Therefore, the development of agricultural applications based on smartphone devices has increased exponentially in the last years. However, the great potential offered by smartphone applications is still yet to be fully realized. Thus, this paper presents a literature review and an analysis of the characteristics of several mobile applications for use in smart/precision agriculture available on the market or developed at research level. This will contribute to provide to farmers an overview of the applications type that exist, what features they provide and a comparison between them. Also, this paper is an important resource to help researchers and applications developers to understand the limitations of existing tools and where new contributions can be performed.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: IEEE Sensors Journal, Institute of Electrical and Electronics Engineers (IEEE), Vol. 23, No. 9 ( 2023-5-1), p. 10132-10139
    Type of Medium: Online Resource
    ISSN: 1530-437X , 1558-1748 , 2379-9153
    Language: Unknown
    Publisher: Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2023
    detail.hit.zdb_id: 2052059-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Plants, MDPI AG, Vol. 11, No. 16 ( 2022-08-19), p. 2154-
    Abstract: Pseudomonas syringae pv. actinidiae (Psa) has been responsible for numerous epidemics of bacterial canker of kiwi (BCK), resulting in high losses in kiwi production worldwide. Current diagnostic approaches for this disease usually depend on visible signs of the infection (disease symptoms) to be present. Since these symptoms frequently manifest themselves in the middle to late stages of the infection process, the effectiveness of phytosanitary measures can be compromised. Hyperspectral spectroscopy has the potential to be an effective, non-invasive, rapid, cost-effective, high-throughput approach for improving BCK diagnostics. This study aimed to investigate the potential of hyperspectral UV–VIS reflectance for in-situ, non-destructive discrimination of bacterial canker on kiwi leaves. Spectral reflectance (325–1075 nm) of twenty plants were obtained with a handheld spectroradiometer in two commercial kiwi orchards located in Portugal, for 15 weeks, totaling 504 spectral measurements. Several modeling approaches based on continuous hyperspectral data or specific wavelengths, chosen by different feature selection algorithms, were tested to discriminate BCK on leaves. Spectral separability of asymptomatic and symptomatic leaves was observed in all multi-variate and machine learning models, including the FDA, GLM, PLS, and SVM methods. The combination of a stepwise forward variable selection approach using a support vector machine algorithm with a radial kernel and class weights was selected as the final model. Its overall accuracy was 85%, with a 0.70 kappa score and 0.84 F-measure. These results were coherent with leaves classified as asymptomatic or symptomatic by visual inspection. Overall, the findings herein reported support the implementation of spectral point measurements acquired in situ for crop disease diagnosis.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Frontiers in Robotics and AI, Frontiers Media SA, Vol. 9 ( 2022-1-28)
    Abstract: Developing ground robots for agriculture is a demanding task. Robots should be capable of performing tasks like spraying, harvesting, or monitoring. However, the absence of structure in the agricultural scenes challenges the implementation of localization and mapping algorithms. Thus, the research and development of localization techniques are essential to boost agricultural robotics. To address this issue, we propose an algorithm called VineSLAM suitable for localization and mapping in agriculture. This approach uses both point- and semiplane-features extracted from 3D LiDAR data to map the environment and localize the robot using a novel Particle Filter that considers both feature modalities. The numeric stability of the algorithm was tested using simulated data. The proposed methodology proved to be suitable to localize a robot using only three orthogonal semiplanes. Moreover, the entire VineSLAM pipeline was compared against a state-of-the-art approach considering three real-world experiments in a woody-crop vineyard. Results show that our approach can localize the robot with precision even in long and symmetric vineyard corridors outperforming the state-of-the-art algorithm in this context.
    Type of Medium: Online Resource
    ISSN: 2296-9144
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2781824-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...