GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 2018
    In:  Organic Geochemistry Vol. 124 ( 2018-10), p. 151-163
    In: Organic Geochemistry, Elsevier BV, Vol. 124 ( 2018-10), p. 151-163
    Type of Medium: Online Resource
    ISSN: 0146-6380
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2018075-5
    detail.hit.zdb_id: 428531-1
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Geochimica et Cosmochimica Acta, Elsevier BV, Vol. 204 ( 2017-05), p. 120-139
    Type of Medium: Online Resource
    ISSN: 0016-7037
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 300305-X
    detail.hit.zdb_id: 1483679-8
    SSG: 13
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Elsevier BV ; 2020
    In:  Geochimica et Cosmochimica Acta Vol. 282 ( 2020-08), p. 324-339
    In: Geochimica et Cosmochimica Acta, Elsevier BV, Vol. 282 ( 2020-08), p. 324-339
    Type of Medium: Online Resource
    ISSN: 0016-7037
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 300305-X
    detail.hit.zdb_id: 1483679-8
    SSG: 13
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2019
    In:  Frontiers in Earth Science Vol. 7 ( 2019-11-8)
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 7 ( 2019-11-8)
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2019
    detail.hit.zdb_id: 2741235-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 7, No. 48 ( 2021-11-26)
    Abstract: The recent expansion of Atlantic waters into the Arctic Ocean represents undisputable evidence of the rapid changes occurring in this region. Understanding the past variability of this “Atlantification” is thus crucial in providing a longer perspective on the modern Arctic changes. Here, we reconstruct the history of Atlantification along the eastern Fram Strait during the past 800 years using precisely dated paleoceanographic records based on organic biomarkers and benthic foraminiferal data. Our results show rapid changes in water mass properties that commenced in the early 20th century—several decades before the documented Atlantification by instrumental records. Comparison with regional records suggests a poleward expansion of subtropical waters since the end of the Little Ice Age in response to a rapid hydrographic reorganization in the North Atlantic. Understanding of this mechanism will require further investigations using climate model simulations.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Climate of the Past, Copernicus GmbH, Vol. 13, No. 4 ( 2017-04-19), p. 359-377
    Abstract: Abstract. Little is known about the climate evolution on the Kamchatka Peninsula during the last glacial–interglacial transition as existing climate records do not reach beyond 12 ka BP. In this study, a summer temperature record for the past 20 kyr is presented. Branched glycerol dialkyl glycerol tetraethers, terrigenous biomarkers suitable for continental air temperature reconstructions, were analyzed in a sediment core from the western continental margin off Kamchatka in the marginal northwest Pacific (NW Pacific). The record suggests that summer temperatures on Kamchatka during the Last Glacial Maximum (LGM) equaled modern temperatures. We suggest that strong southerly winds associated with a pronounced North Pacific High pressure system over the subarctic NW Pacific accounted for the warm conditions. A comparison with an Earth system model reveals discrepancies between model and proxy-based reconstructions for the LGM temperature and atmospheric circulation in the NW Pacific realm. The deglacial temperature development is characterized by abrupt millennial-scale temperature oscillations. The Bølling–Allerød warm phase and the Younger Dryas cold spell are pronounced events, suggesting a connection to North Atlantic climate variability.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Biogeosciences, Copernicus GmbH, Vol. 14, No. 9 ( 2017-05-17), p. 2495-2512
    Abstract: Abstract. The Amazon River transports large amounts of terrestrial organic carbon (OCterr) from the Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon (TOC) content, organic carbon isotopic composition (δ13CTOC), and lignin phenol compositions. TOC and lignin content exhibit positive correlations with Al ∕ Si ratios (indicative of the sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted δ13CTOC values (−26.1 to −29.9 ‰) in the main tributaries consistently correspond with the dominance of C3 vegetation. Ratios of syringyl to vanillyl (S ∕ V) and cinnamyl to vanillyl (C ∕ V) lignin phenols suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin compositions are not observed. In the marine sediments, the distribution of δ13CTOC and Λ8 (sum of eight lignin phenols in organic carbon (OC), expressed as mg/100 mg OC) values implies that OCterr discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during offshore transport does not change the encoded source information. Therefore, the lignin compositions preserved in these offshore sediments can reliably reflect the vegetation in the Amazon River catchment. In sediments from the Amazon fan, low lignin content, relatively depleted δ13CTOC values and high (Ad ∕ Al)V ratios indicating highly degraded lignin imply that a significant fraction of the deposited OCterr is derived from petrogenic (sourced from ancient rocks) sources.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Biogeosciences, Copernicus GmbH, Vol. 16, No. 11 ( 2019-06-04), p. 2247-2268
    Abstract: Abstract. The relative abundance of individual archaeal membrane lipids, namely of glycerol dialkyl glycerol tetraethers (GDGTs) with different numbers of cyclopentane rings, varies with temperature, which enables their use as a paleotemperature proxy index. The first GDGT-based index in marine sediments called TEX86 is believed to reflect mean annual sea surface temperature (maSST). The TEX86L is an alternative temperature proxy for “low-temperature” regions (〈15 ∘C), where the original TEX86 proxy calibration shows a larger scatter. However, TEX86L-derived temperatures still display anomalous estimates in polar regions. In order to elucidate the potential cause of the disagreement between the TEX86L estimate and SST, we analyzed GDGT fluxes and TEX86L-derived temperatures in sinking particles collected with time-series sediment traps in high-northern- and high-southern-latitude regions. At 1296 m depth in the eastern Fram Strait (79∘ N), a combination of various transporting mechanisms for GDGTs might result in seasonally different sinking velocities for particles carrying these lipids, resulting in strong variability in the TEX86L signal. The similarity of flux-weighted TEX86L temperatures from sinking particles and surface sediments implies an export of GDGTs without alteration in the Fram Strait. The estimated temperatures correspond to temperatures in water depths of 30–80 m, where nitrification might occur, indicating the favorable depth habitat of Thaumarchaeota. In the Antarctic Polar Front of the Atlantic sector (50∘ S), TEX86L-derived temperatures displayed warm and cold biases compared to satellite-derived SSTs at 614 m depth, and its flux-weighted mean signal differs from the deep signal at 3196 m. TEX86L-derived temperatures at 3196 m depth and the surface sediment showed up to 7 ∘C warmer temperatures relative to satellite-derived SST. Such a warm anomaly might be caused by GDGT contributions from Euryarchaeota, which are known to dominate archaeal communities in the circumpolar deep water of the Antarctic Polar Front. The other reason might be that a linear calibration is not appropriate for this frontal region. Of the newly suggested SST proxies based on hydroxylated GDGTs (OH-GDGTs), only those with OH-GDGT–0 and crenarchaeol or the ring index (RI) of OH-GDGTs yield realistic temperature estimates in our study regions, suggesting that OH-GDGTs could be applied as a potential temperature proxy in high-latitude oceans.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Biogeosciences, Copernicus GmbH, Vol. 17, No. 17 ( 2020-09-11), p. 4489-4508
    Abstract: Abstract. The temperature proxies U37K′, LDI, TEX86H, and RI-OH are derived from lipid biomarkers, namely long-chain alkenones from coccolithophorids and long-chain diols ascribed tentatively to eustigmatophytes, as well as glycerol dialkyl glycerol tetraethers (GDGTs) and OH-GDGTs produced by Archaea. The applicability of these proxies in the South China Sea (SCS) has been investigated previously. However, in each study only one or two of the proxies were compared, and the recently updated calibrations or new calibrating methods such as BAYSPAR and BAYSPLINE were not applied. Here, we investigate four proxies in parallel in a set of surface sediment samples from the northern SCS shelf and relate them to local sea surface temperature (SST), which allows for us to compare and assess similarities and differences between them and also help improve regional multiproxy seawater temperature reconstructions. Our results indicate that U37K′ reflects annual mean SST with a slight bias toward the warm season. Terrestrial inputs appear to have a significant impact on LDI, TEX86H, and RI-OH proxies near the coast, leading to colder LDI- and TEX86H-derived temperatures but a warmer RI-OH temperature estimate. After excluding samples influenced by terrestrial materials, we find that LDI-derived temperature agrees well with annual SST, while TEX86H- and RI-OH-derived temperature estimates are close to SSTs in seasons dominated by the East Asian winter monsoon and summer monsoon, respectively. The different seasonal biases of these temperature proxies provide valuable tools to reconstruct regional SSTs under different monsoonal conditions.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Climate of the Past, Copernicus GmbH, Vol. 19, No. 1 ( 2023-01-23), p. 159-178
    Abstract: Abstract. Arctic warming and sea level change will lead to widespread permafrost thaw and subsequent mobilization. Sedimentary records of past warming events during the Last Glacial–interglacial transition can be used to study the conditions under which permafrost mobilization occurs and which changes in vegetation on land are associated with such warming. The Amur and Yukon rivers discharging into the Okhotsk and Bering seas, respectively, drain catchments that have been, or remain until today, covered by permafrost. Here we study two marine sediment cores recovered off the mouths of these rivers. We use lignin phenols as biomarkers, which are excellently suited for the reconstruction of terrestrial higher plant vegetation, and compare them with previously published lipid biomarker data. We find that in the Yukon basin, vegetation change and wetland expansion began already in the early deglaciation (ED; 14.6–19 ka). This timing is different from observed changes in the Okhotsk Sea reflecting input from the Amur basin, where wetland expansion and vegetation change occurred later in the Pre-Boreal (PB). In the two basins, angiosperm contribution and wetland extent all reached maxima during the PB, both decreasing and stabilizing after the PB. The permafrost of the Amur basin began to become remobilized in the PB. Retreat of sea ice coupled with increased sea surface temperatures in the Bering Sea during the ED might have promoted early permafrost mobilization. In modern Arctic river systems, lignin and n-alkanes are transported from land to the ocean via different pathways, i.e., surface runoff vs. erosion of deeper deposits, respectively. However, accumulation rates of lignin phenols and lipids are similar in our records, suggesting that under conditions of rapid sea level rise and shelf flooding, both types of terrestrial biomarkers are delivered by the same transport pathway. This finding suggests that the fate of terrigenous organic matter in the Arctic differs on both temporal and spatial scales.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...