GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Molecular Microbiology, Wiley, Vol. 103, No. 6 ( 2017-03), p. 1004-1019
    Abstract: Metabolic adaptation is a key feature for the virulence of pathogenic intracellular bacteria. Nevertheless, little is known about the pathways in adapting the bacterial metabolism to multiple carbon sources available from the host cell. To analyze the metabolic adaptation of the obligate intracellular human pathogen Chlamydia trachomatis , we labeled infected HeLa or Caco‐2 cells with 13 C‐marked glucose, glutamine, malate or a mix of amino acids as tracers. Comparative GC‐MS‐based isotopologue analysis of protein‐derived amino acids from the host cell and the bacterial fraction showed that C. trachomatis efficiently imported amino acids from the host cell for protein biosynthesis. FT‐ICR‐MS analyses also demonstrated that label from exogenous 13 C‐glucose was efficiently shuffled into chlamydial lipopolysaccharide probably via glucose 6‐phosphate of the host cell. Minor fractions of bacterial Ala, Asp, and Glu were made de novo probably using dicarboxylates from the citrate cycle of the host cell. Indeed, exogenous 13 C‐malate was efficiently taken up by C. trachomatis and metabolized into fumarate and succinate when the bacteria were kept in axenic medium containing the malate tracer. Together, the data indicate co‐substrate usage of intracellular C. trachomatis in a stream‐lined bipartite metabolism with host cell‐supplied amino acids for protein biosynthesis, host cell‐provided glucose 6‐phosphate for cell wall biosynthesis, and, to some extent, one or more host cell‐derived dicarboxylates, e.g. malate, feeding the partial TCA cycle of the bacterium. The latter flux could also support the biosynthesis of meso‐2,6‐diaminopimelate required for the formation of chlamydial peptidoglycan.
    Type of Medium: Online Resource
    ISSN: 0950-382X , 1365-2958
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 1501537-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2013
    In:  Frontiers in Cellular and Infection Microbiology Vol. 3 ( 2013)
    In: Frontiers in Cellular and Infection Microbiology, Frontiers Media SA, Vol. 3 ( 2013)
    Type of Medium: Online Resource
    ISSN: 2235-2988
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2013
    detail.hit.zdb_id: 2619676-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Cellular and Infection Microbiology Vol. 10 ( 2021-1-14)
    In: Frontiers in Cellular and Infection Microbiology, Frontiers Media SA, Vol. 10 ( 2021-1-14)
    Abstract: Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
    Type of Medium: Online Resource
    ISSN: 2235-2988
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2619676-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2017
    In:  Frontiers in Cellular and Infection Microbiology Vol. 7 ( 2017-07-13)
    In: Frontiers in Cellular and Infection Microbiology, Frontiers Media SA, Vol. 7 ( 2017-07-13)
    Type of Medium: Online Resource
    ISSN: 2235-2988
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2017
    detail.hit.zdb_id: 2619676-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Cellular and Infection Microbiology Vol. 12 ( 2022-7-19)
    In: Frontiers in Cellular and Infection Microbiology, Frontiers Media SA, Vol. 12 ( 2022-7-19)
    Abstract: Both, antibiotic persistence and antibiotic resistance characterize phenotypes of survival in which a bacterial cell becomes insensitive to one (or even) more antibiotic(s). However, the molecular basis for these two antibiotic-tolerant phenotypes is fundamentally different. Whereas antibiotic resistance is genetically determined and hence represents a rather stable phenotype, antibiotic persistence marks a transient physiological state triggered by various stress-inducing conditions that switches back to the original antibiotic sensitive state once the environmental situation improves. The molecular basics of antibiotic resistance are in principle well understood. This is not the case for antibiotic persistence. Under all culture conditions, there is a stochastically formed, subpopulation of persister cells in bacterial populations, the size of which depends on the culture conditions. The proportion of persisters in a bacterial population increases under different stress conditions, including treatment with bactericidal antibiotics (BCAs). Various models have been proposed to explain the formation of persistence in bacteria. We recently hypothesized that all physiological culture conditions leading to persistence converge in the inability of the bacteria to re-initiate a new round of DNA replication caused by an insufficient level of the initiator complex ATP-DnaA and hence by the lack of formation of a functional orisome. Here, we extend this hypothesis by proposing that in this persistence state the bacteria become more susceptible to mutation-based antibiotic resistance provided they are equipped with error-prone DNA repair functions. This is - in our opinion - in particular the case when such bacterial populations are exposed to BCAs.
    Type of Medium: Online Resource
    ISSN: 2235-2988
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2619676-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 3, No. 3 ( 2015-06-18)
    Abstract: Several bacterial pathogens that cause severe infections in warm-blooded animals, including humans, have the potential to actively invade host cells and to efficiently replicate either in the cytosol or in specialized vacuoles of the mammalian cells. The interaction between these intracellular bacterial pathogens and the host cells always leads to multiple physiological changes in both interacting partners, including complex metabolic adaptation reactions aimed to promote proliferation of the pathogen within different compartments of the host cells. In this chapter, we discuss the necessary nutrients and metabolic pathways used by some selected cytosolic and vacuolar intracellular pathogens and - when available - the links between the intracellular bacterial metabolism and the expression of the virulence genes required for the intracellular bacterial replication cycle. Furthermore, we address the growing evidence that pathogen-specific factors may also trigger metabolic responses of the infected mammalian cells affecting the carbon and nitrogen metabolism as well as defense reactions. We also point out that many studies on the metabolic host cell responses induced by the pathogens have to be scrutinized due to the use of established cell lines as model host cells, as these cells are (in the majority) cancer cells that exhibit a dysregulated primary carbon metabolism. As the exact knowledge of the metabolic host cell responses may also provide new concepts for antibacterial therapies, there is undoubtedly an urgent need for host cell models that more closely reflect the in vivo infection conditions.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2015
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Frontiers Media SA ; 2019
    In:  Frontiers in Cellular and Infection Microbiology Vol. 9 ( 2019-3-4)
    In: Frontiers in Cellular and Infection Microbiology, Frontiers Media SA, Vol. 9 ( 2019-3-4)
    Type of Medium: Online Resource
    ISSN: 2235-2988
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2019
    detail.hit.zdb_id: 2619676-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...