GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Biology, MDPI AG, Vol. 12, No. 2 ( 2023-01-31), p. 225-
    Abstract: The burrowing crustacean decapod Nephrops norvegicus is a significant species in European Atlantic and Mediterranean fisheries. Research over the decades has mainly focused on behavioral and physiological aspects related to the burrowing lifestyle, since animals can only be captured by trawls when engaged in emergence on the seabed. Here, we performed a global bibliographic survey of all the scientific literature retrieved in SCOPUS since 1965, and terminology maps were produced with the VOSviewer software to reveal established and emerging research areas. We produced three term-map plots: term clustering, term citation, and term year. The term clustering network showed three clusters: fishery performance, assessment, and management; biological cycles in growth, reproduction, and behavior; and finally, physiology and ecotoxicology, including food products. The term citation map showed that intense research is developed on ecotoxicology and fishery management. Finally, the term year map showed that the species was first studied in its morphological and physiological aspects and more recently in relation to fishery and as a food resource. Taken together, the results indicate scarce knowledge on how burrowing behavior and its environmental control can alter stock assessment, because of the poor use of current and advanced monitoring technologies.
    Type of Medium: Online Resource
    ISSN: 2079-7737
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2661517-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Scientific Reports Vol. 11, No. 1 ( 2021-03-11)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-03-11)
    Abstract: Underwater Television (UWTV) surveys provide fishery-independent stock size estimations of the Norway lobster ( Nephrops norvegicus ), based directly on burrow counting using the survey assumption of “one animal = one burrow”. However, stock size may be uncertain depending on true rates of burrow occupation. For the first time, 3055 video transects carried out in several Functional Units (FUs) around Ireland were used to investigate this uncertainty. This paper deals with the discrimination of burrow emergence and door-keeping diel behaviour in Nephrops norvegicus, which is one of the most commercially important fisheries in Europe. Comparisons of burrow densities with densities of visible animals engaged in door-keeping (i.e. animals waiting at the tunnel entrance) behaviour and animals in full emergence, were analysed at time windows of expected maximum population emergence. Timing of maximum emergence was determined using wave-form analysis and GAM modelling. The results showed an average level of 1 visible Nephrops individual per 10 burrow systems, depending on sampling time and depth. This calls into question the current burrow occupancy assumption which may not hold true in all FUs. This is discussed in relation to limitations of sampling methodologies and new autonomous robotic technological solutions for monitoring.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-9-9)
    Abstract: The Norway lobster, Nephrops norvegicus , supports a key European fishery. Stock assessments for this species are mostly based on trawling and UnderWater TeleVision (UWTV) surveys. However, N. norvegicus are burrowing organisms and these survey methods are unable to sample or observe individuals in their burrows. To account for this, UWTV surveys generally assume that “1 burrow system = 1 animal”, due to the territorial behavior of N. norvegicus . Nevertheless, this assumption still requires in-situ validation. Here, we outline how to improve the accuracy of current stock assessments for N. norvegicus with novel ecological monitoring technologies, including: robotic fixed and mobile camera-platforms, telemetry, environmental DNA (eDNA), and Artificial Intelligence (AI). First, we outline the present status and threat for overexploitation in N. norvegicus stocks. Then, we discuss how the burrowing behavior of N. norvegicus biases current stock assessment methods. We propose that state-of-the-art stationary and mobile robotic platforms endowed with innovative sensors and complemented with AI tools could be used to count both animals and burrows systems in-situ , as well as to provide key insights into burrowing behavior. Next, we illustrate how multiparametric monitoring can be incorporated into assessments of physiology and burrowing behavior. Finally, we develop a flowchart for the appropriate treatment of multiparametric biological and environmental data required to improve current stock assessment methods.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...