GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chen, Zeqiang  (5)
Material
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 2021
    In:  Earth-Science Reviews Vol. 222 ( 2021-11), p. 103828-
    In: Earth-Science Reviews, Elsevier BV, Vol. 222 ( 2021-11), p. 103828-
    Type of Medium: Online Resource
    ISSN: 0012-8252
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 1792-9
    detail.hit.zdb_id: 2012642-6
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Institute of Electrical and Electronics Engineers (IEEE) ; 2024
    In:  IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Vol. 17 ( 2024), p. 3425-3437
    In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Institute of Electrical and Electronics Engineers (IEEE), Vol. 17 ( 2024), p. 3425-3437
    Type of Medium: Online Resource
    ISSN: 1939-1404 , 2151-1535
    Language: Unknown
    Publisher: Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2024
    detail.hit.zdb_id: 2457423-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Remote Sensing, MDPI AG, Vol. 15, No. 13 ( 2023-07-05), p. 3410-
    Abstract: Surface soil moisture (SSM) and root-zone soil moisture (RZSM) are key hydrological variables for the agricultural water cycle and vegetation growth. Accurate SSM and RZSM forecasting at sub-seasonal scales would be valuable for agricultural water management and preparations. Currently, weather model-based soil moisture predictions are subject to large uncertainties due to inaccurate initial conditions and empirical parameterization schemes, while the data-driven machine learning methods have limitations in modeling long-term temporal dependences of SSM and RZSM because of the lack of considerations in the soil water process. Thus, here, we innovatively integrate the model-based soil moisture predictions from a sub-seasonal-to-seasonal (S2S) model into a data-driven stacked deep learning model to construct a hybrid SSM and RZSM forecasting framework. The hybrid forecasting model is evaluated over the Yangtze River Basin and parts of Europe from 1- to 46-day lead times and is compared with four baseline methods, including the support vector regression (SVR), random forest (RF), convolutional long short-term memory (ConvLSTM) and the S2S model. The results indicate substantial skill improvements in the hybrid model relative to baseline models over the two study areas spatiotemporally, in terms of the correlation coefficient, unbiased root mean square error (ubRMSE) and RMSE. The hybrid forecasting model benefits from the long-lead predictive skill from S2S and retains the advantages of data-driven soil moisture memory modeling at short-lead scales, which account for the superiority of hybrid forecasting. Overall, the developed hybrid model is promising for improved sub-seasonal SSM and RZSM forecasting over global and local areas.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Hydrology and Earth System Sciences Vol. 26, No. 11 ( 2022-06-14), p. 2923-2938
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 26, No. 11 ( 2022-06-14), p. 2923-2938
    Abstract: Abstract. Precipitation forecasting is an important mission in weather science. In recent years, data-driven precipitation forecasting techniques could complement numerical prediction, such as precipitation nowcasting, monthly precipitation projection and extreme precipitation event identification. In data-driven precipitation forecasting, the predictive uncertainty arises mainly from data and model uncertainties. Current deep learning forecasting methods could model the parametric uncertainty by random sampling from the parameters. However, the data uncertainty is usually ignored in the forecasting process and the derivation of predictive uncertainty is incomplete. In this study, the input data uncertainty, target data uncertainty and model uncertainty are jointly modeled in a deep learning precipitation forecasting framework to estimate the predictive uncertainty. Specifically, the data uncertainty is estimated a priori and the input uncertainty is propagated forward through model weights according to the law of error propagation. The model uncertainty is considered by sampling from the parameters and is coupled with input and target data uncertainties in the objective function during the training process. Finally, the predictive uncertainty is produced by propagating the input uncertainty in the testing process. The experimental results indicate that the proposed joint uncertainty modeling framework for precipitation forecasting exhibits better forecasting accuracy (improving RMSE by 1 %–2 % and R2 by 1 %–7 % on average) relative to several existing methods, and could reduce the predictive uncertainty by ∼28 % relative to the approach of Loquercio et al. (2020). The incorporation of data uncertainty in the objective function changes the distributions of model weights of the forecasting model and the proposed method can slightly smooth the model weights, leading to the reduction of predictive uncertainty relative to the method of Loquercio et al. (2020). The predictive accuracy is improved in the proposed method by incorporating the target data uncertainty and reducing the forecasting error of extreme precipitation. The developed joint uncertainty modeling method can be regarded as a general uncertainty modeling approach to estimate predictive uncertainty from data and model in forecasting applications.
    Type of Medium: Online Resource
    ISSN: 1607-7938
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2100610-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Remote Sensing, MDPI AG, Vol. 15, No. 5 ( 2023-03-02), p. 1417-
    Abstract: Ocean primary productivity generated by phytoplankton is critical for ocean ecosystems and the global carbon cycle. Accurate ocean primary productivity forecasting months in advance is beneficial for marine management. Previous persistence-based prediction studies ignore the temporal memories of multiple relevant factors and the seasonal forecasting skill drops quickly with increasing lead time. On the other hand, the emerging ensemble climate forecasts are not well considered as new predictability sources of ocean conditions. Here we proposed a joint forecasting model by combining the seasonal climate predictions from ten heterogeneous models and the temporal memories of relevant factors to examine the monthly predictability of ocean productivity from 0.5- to 11.5-month lead times. The results indicate that a total of ~90% and ~20% productive oceans are expected to be skillfully predicted by the combination of seasonal SST predictions and local memory at 0.5- and 4.5-month leads, respectively. The joint forecasting model improves by 10% of the skillfully predicted areas at 6.5-month lead relative to the prediction by productivity persistence. The hybrid data-driven and model-driven forecasting approach improves the predictability of ocean productivity relative to individual predictions, of which the seasonal climate predictions contribute largely to the skill improvement over the equatorial Pacific and Indian Ocean. These findings highlight the advantages of the integration of climate predictions and temporal memory for ocean productivity forecasting and may provide useful seasonal forecasting information for ocean ecosystem management.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...