GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • MDPI AG  (2)
  • Chatzievangelou, Damianos  (2)
  • Thomsen, Laurenz  (2)
Materialart
Verlag/Herausgeber
  • MDPI AG  (2)
Sprache
Erscheinungszeitraum
  • 1
    In: Sensors, MDPI AG, Vol. 20, No. 10 ( 2020-05-25), p. 2991-
    Kurzfassung: Deep-sea environmental datasets are ever-increasing in size and diversity, as technological advances lead monitoring studies towards long-term, high-frequency data acquisition protocols. This study presents examples of pre-analysis data treatment steps applied to the environmental time series collected by the Internet Operated Deep-sea Crawler “Wally” during a 7-year deployment (2009–2016) in the Barkley Canyon methane hydrates site, off Vancouver Island (BC, Canada). Pressure, temperature, electrical conductivity, flow, turbidity, and chlorophyll data were subjected to different standardizing, normalizing, and de-trending methods on a case-by-case basis, depending on the nature of the treated variable and the range and scale of the values provided by each of the different sensors. The final pressure, temperature, and electrical conductivity (transformed to practical salinity) datasets are ready for use. On the other hand, in the cases of flow, turbidity, and chlorophyll, further in-depth processing, in tandem with data describing the movement and position of the crawler, will be needed in order to filter out all possible effects of the latter. Our work evidences challenges and solutions in multiparametric data acquisition and quality control and ensures that a big step is taken so that the available environmental data meet high quality standards and facilitate the production of reliable scientific results.
    Materialart: Online-Ressource
    ISSN: 1424-8220
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2052857-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Journal of Marine Science and Engineering, MDPI AG, Vol. 11, No. 4 ( 2023-04-18), p. 857-
    Kurzfassung: The use of marine cabled video observatories with multiparametric environmental data collection capability is becoming relevant for ecological monitoring strategies. Their ecosystem surveying can be enforced in real time, remotely, and continuously, over consecutive days, seasons, and even years. Unfortunately, as most observatories perform such monitoring with fixed cameras, the ecological value of their data is limited to a narrow field of view, possibly not representative of the local habitat heterogeneity. Docked mobile robotic platforms could be used to extend data collection to larger, and hence more ecologically representative areas. Among the various state-of-the-art underwater robotic platforms available, benthic crawlers are excellent candidates to perform ecological monitoring tasks in combination with cabled observatories. Although they are normally used in the deep sea, their high positioning stability, low acoustic signature, and low energetic consumption, especially during stationary phases, make them suitable for coastal operations. In this paper, we present the integration of a benthic crawler into a coastal cabled observatory (OBSEA) to extend its monitoring radius and collect more ecologically representative data. The extension of the monitoring radius was obtained by remotely operating the crawler to enforce back-and-forth drives along specific transects while recording videos with the onboard cameras. The ecological relevance of the monitoring-radius extension was demonstrated by performing a visual census of the species observed with the crawler’s cameras in comparison to the observatory’s fixed cameras, revealing non-negligible differences. Additionally, the videos recorded from the crawler’s cameras during the transects were used to demonstrate an automated photo-mosaic of the seabed for the first time on this class of vehicles. In the present work, the crawler travelled in an area of 40 m away from the OBSEA, producing an extension of the monitoring field of view (FOV), and covering an area approximately 230 times larger than OBSEA’s camera. The analysis of the videos obtained from the crawler’s and the observatory’s cameras revealed differences in the species observed. Future implementation scenarios are also discussed in relation to mission autonomy to perform imaging across spatial heterogeneity gradients around the OBSEA.
    Materialart: Online-Ressource
    ISSN: 2077-1312
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2023
    ZDB Id: 2738390-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...