GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2013-11-06
    Beschreibung: Artificial skin, which mimics the functions of natural skin, will be very important in the future for robots used by humans in daily life. However, combining skin's pressure sensitivity and mechanical self-healing properties in a man-made material remains a challenging task. Here, we show that graphene and polymers can be integrated into a thin film which mimics both the mechanical self-healing and pressure sensitivity behavior of natural skin without any external power supply. Its ultimate strain and tensile strength are even two and ten times larger than the corresponding values of human skin, respectively. It also demonstrates highly stable sensitivity to a very light touch (0.02 kPa), even in bending or stretching states. Scientific Reports 3 doi: 10.1038/srep03138
    Digitale ISSN: 2045-2322
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2013-12-13
    Beschreibung: Hierarchical Li4Ti5O12/TiO2 tubes composed of ultrathin nanoflakes have been successfully fabricated via the calcination of the hydrothermal product of a porous amorphous TiO2 precursor and lithium hydroxide monohydrate. The hierarchical tubes are characterized by powder X-ray diffraction, nitrogen adsorption/desorption, scanning electron microscopy and transmission electron microscopy techniques. These nanoflakes exhibit a quite complex submicroscopic structure with regular structural imperfection, including a huge number of grain boundaries and dislocations. The lithium ion storage property of these tubes is evaluated by galvanostatic discharge/charge experiment. The product shows initial discharge capacities of 420, 225, and 160 mAh g−1 at 0.01, 0.1, and 1.0 A g−1, respectively. After 100 cycles, the discharge capacity is 139 mAh g−1 at 1.0 A g−1 with a capacity retention of 87%, demonstrating good high-rate performance and good cycleability. The high electrochemical performance is attributed to unique structure and morphology of the tubes. The regular structural imperfection existed in the nanoflakes also benefit to lithium ion storage property of these tubes. The hierarchical Li4Ti5O12/TiO2 tubes are a promising anode material for lithium-ion batteries with high power and energy densities. Scientific Reports 3 doi: 10.1038/srep03490
    Digitale ISSN: 2045-2322
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2013-12-03
    Beschreibung: We have designed a novel hybrid nanostructure by coating Fe2O3 nanoparticles with multi-walled carbon nanotubes to enhance the lithium storage capability of Fe2O3. The strategy to prepare Fe2O3@MWCNTs involves the synthesis of Fe nanoparticles wrapped in MWCNTs, followed by the oxidation of Fe nanoparticles under carbon dioxide. When used as the anode in a Li-ion battery, this hybrid material (70.32 wt% carbon nanotubes, 29.68 wt% Fe2O3) showed a reversible discharge capacity of 515 mAhg−1 after 50 cycles at a density of 100 mAg−1 and the capacity based on Fe2O3 nanoparticles was calculated as 1147 mAhg−1, Three factors are responsibile for the superior performance: (1) The hollow interiors of MWCNTs provide enough spaces for the accommodation of large volume expansion of inner Fe2O3 nanoparticles, which can improving the stability of electrode; (2) The MWCNTs increase the overall conductivity of the anode; (3) A stable solid electrolyte interface film formed on the surface of MWCNTs may reduce capacity fading. Scientific Reports 3 doi: 10.1038/srep03392
    Digitale ISSN: 2045-2322
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2015-02-17
    Beschreibung: Members of the inositol phosphate metabolism pathway regulate cell proliferation, migration and phosphatidylinositol-3-kinase (PI3K)/Akt signaling, and are frequently dysregulated in cancer. Whether germline genetic variants in inositol phosphate metabolism pathway are associated with cancer risk remains to be clarified. We examined the association between inositol phosphate metabolism pathway genes and risk of eight types of cancer using data from genome-wide association studies. Logistic regression models were applied to evaluate SNP-level associations. Gene- and pathway-based associations were tested using the permutation-based adaptive rank-truncated product method. The overall inositol phosphate metabolism pathway was significantly associated with risk of lung cancer (P = 2.00 × 10−4), esophageal squamous cell carcinoma (P = 5.70 × 10−3), gastric cancer (P = 3.03 × 10−2) and renal cell carcinoma (P = 1.26 × 10−2), but not with pancreatic cancer (P = 1.40 × 10−1), breast cancer (P = 3.03 × 10−1), prostate cancer (P = 4.51 × 10−1), and bladder cancer (P = 6.30 × 10−1). Our results provide a link between inherited variation in the overall inositol phosphate metabolism pathway and several individual genes and cancer. Further studies will be needed to validate these positive findings, and to explore its mechanisms. Scientific Reports 5 doi: 10.1038/srep08473
    Digitale ISSN: 2045-2322
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2016-05-20
    Beschreibung: The simple neuroendocrine-immune regulatory network in oyster 〈i〉Crassostrea gigas〈/i〉 mediates complex functions Scientific Reports, Published online: 19 May 2016; doi:10.1038/srep26396
    Digitale ISSN: 2045-2322
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Nature Publishing Group (NPG)
    Publikationsdatum: 2016-11-11
    Beschreibung: Conformal mapping for multiple terminals Scientific Reports, Published online: 10 November 2016; doi:10.1038/srep36918
    Digitale ISSN: 2045-2322
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2014-06-19
    Beschreibung: Controllable gene expression is always a challenge and of great significance to biomedical research and clinical applications. Recently, various approaches based on extra-engineered light-sensitive proteins have been developed to provide optogenetic actuators for gene expression. Complicated biomedical techniques including exogenous genes engineering, transfection, and material delivery are needed. Here we present an all-optical method to regulate gene expression in targeted cells. Intrinsic or exogenous genes can be activated by a Ca2+-sensitive transcription factor nuclear factor of activated T cells (NFAT) driven by a short flash of femtosecond-laser irradiation. When applied to mesenchymal stem cells, expression of a differentiation regulator Osterix can be activated by this method to potentially induce differentiation of them. A laser-induced “Ca2+-comb” (LiCCo) by multi-time laser exposure is further developed to enhance gene expression efficiency. This noninvasive method hence provides an encouraging advance of gene expression regulation, with promising potential of applying in cell biology and stem-cell science. Scientific Reports 4 doi: 10.1038/srep05346
    Digitale ISSN: 2045-2322
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2014-07-22
    Beschreibung: Lysine acetylation is a reversible post-translational modification, playing an important role in cytokine signaling, transcriptional regulation, and apoptosis. To fully understand acetylation mechanisms, identification of substrates and specific acetylation sites is crucial. Experimental identification is often time-consuming and expensive. Alternative bioinformatics methods are cost-effective and can be used in a high-throughput manner to generate relatively precise predictions. Here we develop a method termed as SSPKA for species-specific lysine acetylation prediction, using random forest classifiers that combine sequence-derived and functional features with two-step feature selection. Feature importance analysis indicates functional features, applied for lysine acetylation site prediction for the first time, significantly improve the predictive performance. We apply the SSPKA model to screen the entire human proteome and identify many high-confidence putative substrates that are not previously identified. The results along with the implemented Java tool, serve as useful resources to elucidate the mechanism of lysine acetylation and facilitate hypothesis-driven experimental design and validation. Scientific Reports 4 doi: 10.1038/srep05765
    Digitale ISSN: 2045-2322
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2013-03-29
    Beschreibung: The high theoretical capacity and low discharge potential of silicon have attracted much attention on Si-based anodes. Herein, hollow porous SiO2 nanocubes have been prepared via a two-step hard-template process and evaluated as electrode materials for lithium-ion batteries. The hollow porous SiO2 nanocubes exhibited a reversible capacity of 919 mAhg−1 over 30 cycles. The reasonable property could be attributed to the unique hollow nanostructure with large volume interior and numerous crevices in the shell, which could accommodate the volume change and alleviate the structural strain during Li ions' insertion and extraction, as well as allow rapid access of Li ions during charge/discharge cycling. It is found that the formation of irreversible or reversible lithium silicates in the anodes determines the capacity of a deep-cycle battery, fast transportation of Li ions in hollow porous SiO2 nanocubes is beneficial to the formation of Li2O and Si, contributing to the high reversible capacity. Scientific Reports 3 doi: 10.1038/srep01568
    Digitale ISSN: 2045-2322
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2013-03-09
    Beschreibung: Nanomaterials with particular nanostructures which usually possess special properties always attract considerable attention. A novel bimetallic Pt/Cu hexapod nanostructure was prepared by a facile one-pot strategy. The formation mechanism was investigated by the time sequential evolution experiments and the hexapod concave nanostructures originated from the Pt/Cu rhombic dodecahedron. Further electrochemical measurements indicated the bimetallic Pt/Cu hexapod concave nanocrystals showed enhanced catalytic activities. It is believed that these novel nanostuctures would open up new opportunities for catalytic applications. Scientific Reports 3 doi: 10.1038/srep01404
    Digitale ISSN: 2045-2322
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...