GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Hochschulschrift ; Gotlandbecken ; Vermischung ; Turbulenz ; Interne Welle ; Topografische Welle
    Description / Table of Contents: Mixing processes in the deeper Gotland Basin were measured and analysed using the inert tracer CF3SF5, microstructure profiles as well as five permanent moorings yielding two years of in situ data. The tracer spreading showed that mixing rates in the deeper Gotland Basin are dominated by boundary mixing processes. The major mixing agent for the observed mixing rates is identified as sub-inertial topographic waves that are resonantly coupled to wind events.
    Type of Medium: Online Resource
    Pages: Online-Ressource , Ill., graph. Darst.
    RVK:
    Language: English
    Note: Rostock, Univ., Mathematisch-Naturwiss. Fak., Diss., 2012
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift ; Gotlandbecken ; Vermischung ; Turbulenz ; Interne Welle ; Topografische Welle
    Type of Medium: Book
    Pages: 116 S. , Ill., graph. Darst.
    RVK:
    Language: English
    Note: Rostock, Univ., Mathematisch-Naturwiss. Fak., Diss., 2012
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-01
    Description: The characteristics of tidal velocity profiles and their relation to stratification are investigated based on high‐resolution field data collected at four locations in the German Bight Region of Freshwater Influence (ROFI) in the North Sea. The deployments each include two to three tidal cycles and were conducted during field campaigns in August 2016 and May 2018. The depth‐averaged semidiurnal tidal motion is dominated by a standing wave directed toward the coast, but modified by a smaller, coast‐parallel progressive wave contribution. The time series of the tidal velocity profiles consistently show tidal asymmetries with higher flood than ebb velocities near the surface and counter‐clockwise rotation of the velocity trajectories at depth. Near the surface, phase‐locked periodic changes in the sense of rotation within the tidal cycle are evident for three deployments, resulting in periodic counter‐rotation of the upper and lower layer. During these episodes, stratification of the water column is observed. Counter‐rotation is initiated after a sudden decoupling developing from the surface downward, with subsequent rapid development of stratification and velocity shear. The observed decoupling is most likely triggered by advection of the plume‐induced lateral surface density gradient by weakly sheared ebb currents toward the study site. Due to the dominance of the standing wave in the German Bight ROFI, the observed intra‐tidal variations of stratification are more similar to the Liverpool Bay and differ significantly from the Rhine ROFI, where the tidal dynamics are controlled by a progressive Kelvin wave.
    Description: Plain Language Summary; The water velocities in the German Bight are strongly influenced by river freshwater input and semidiurnal tides. While the freshwater input from the rivers has a stratifying effect, tidal motion as well as wind and waves induce mixing. These forces compete in controlling the state of the water column in a complex manner. In theory, tidal motion should describe elliptical paths. However, in reality, these ellipses can be modified for example, by periodically occurring stratification. To assess the characteristics of the semidiurnal tidal velocity profile and its variability, four instruments to measure current velocity profiles were deployed in the German Bight during August 2016 and May 2018. Measurements were carried out for the duration of up to three tidal cycles, accompanied by parallel profiles of water temperature and salinity taken from the anchored ship nearby. Results show that periodic stratification related to the river freshwater plume is associated with periodically counter‐rotating tidal currents during the tidal cycle. The measurement position relative to the location of the density front of the plume appears to be critical for the occurrence of counter‐rotation. The observed dynamics are qualitatively compared to two other well‐studied coastal ocean regions of freshwater influence.
    Description: Key Points: High‐resolution velocity and density data from the German Bight Region of Freshwater Influence are used to assess M2 tidal properties and intra‐tidal variability. M2 tidal motion is a hybrid of standing and progressive waves, with the standing wave contribution dominating. Periodic counter‐rotation of upper‐ and lower‐layer current trajectories during the tidal cycle is related to water column stratification.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.1594/PANGAEA.919168
    Description: https://doi.pangaea.de/10.1594/PANGAEA.943958
    Description: https://doi.pangaea.de/10.1594/PANGAEA.943955
    Description: https://doi.org/10.1594/PANGAEA.897214
    Keywords: ddc:551.46
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-11-03
    Description: Semi-enclosed marginal seas like the Baltic Sea are often characterized by permanently anoxic deep layers, and may therefore serve as important model systems to study the causes and consequences of the predicted global expansion of oxygen minimum zones. Here, we focus on the role of lateral intrusions in maintaining the “hypoxic transition zone” (HTZ) of the Baltic Sea, which characterizes the quasi-permanent hypoxic region located between the oxygenized surface layer and the sulfidic deep-water region. Based on long-term deployments of an autonomous profiling system in the central Baltic Sea, we show that oxic mid-water intrusions are ubiquitous features, providing the most important oxygen source for the HTZ, and largely control the vertical and lateral extent of the hypoxic areas. An oxygen budget for the HTZ suggests that oxygen turnover in the HTZ is, to first order, determined by a long-term balance between sedimentary oxygen demand and oxygen import by intrusions. The downward mixing of oxygen into the HTZ is generally non-negligible but unlikely to provide a first-order contribution to the HTZ oxygen budget. On the long-term average, mid-water intrusions were shown to inject 30–60 Gmol of oxygen per year into the deep-water region below the permanent halocline. This is approximately one order of magnitude larger than the average amount of oxygen imported during the massive deep-water inflow events (Major Baltic Inflows) that occur on an approximately decadal time scale, highlighting the HTZ as a hotspot for biogeochemical turnover.
    Keywords: 551.46 ; Baltic Sea ; hydrography ; hypoxic transistion zone (HTZ) ; biogeochemical turnover
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...