GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 4 ( 2017-02-22)
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2017
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Environmental Science Vol. 10 ( 2022-11-29)
    In: Frontiers in Environmental Science, Frontiers Media SA, Vol. 10 ( 2022-11-29)
    Abstract: Leaf wax n -alkane biomarkers are widely used to infer past vegetation dynamics and hydroclimate changes. The use of these compounds strongly relies on the characterization of modern plants. However, few studies have explored leaf waxes of modern plants and their application to reconstructing climate and environmental changes in the Iberian Peninsula, a region known for its high vulnerability to climate change. In this study, we characterize the distributions and compound-specific isotopic compositions of the leaf waxes of dominant plants in the vegetation cover, soil, and surface sediment of the Lake Peixão area, a high-mountain glacial lake in Serra da Estrela (central Portugal). Our results show that the modern oro-Mediterranean (subalpine) vegetation of the study area is dominated by C 3 grasses/herbs and shrubs that preferentially produce long-chain leaf waxes (≥C 27 ). The C 31 n -alkane display the overall highest concentration, produced by some grasses and shrubs, but especially Erica sp (heather), which is highlighted as a major source for the total n -alkane pool in the lake sediments. C 29 is the second-most abundant and the most equally produced n -alkane of the vegetation cover; C 25 and C 27 homologs are mainly associated with aquatic-related grasses/herbs, while C 33 and C 35 are particularly linked to cold-drought tolerant Juniperus sp. shrubs. Shrubs show higher but proportional values than grasses/herbs in the isotopic space, suggesting a directly proportional physiological adaptation of the two ecological forms to the prevailing climatic and environmental factors of the study area. C 29 is pointed as the most representative (or less plant-biased) leaf wax n -alkane in the lake sediments. Thus, δD of C 29 n -alkane is interpreted as a robust terrestrial hydrological indicator (δD terr ), which signal is believed to be strongly influenced by the mean air temperature and/or precipitation amount. Despite the sparse vegetation and small catchment area, the apparent hydrogen fractionation factor, determined from δD terr of the lake surface sediment, is in line with the modeled global mean values for the latitude of the study area. The different molecular and compound-specific signatures of the studied oro-Mediterranean species have the potential to support future interpretations of leaf wax biomarkers in the Iberian Peninsula.
    Type of Medium: Online Resource
    ISSN: 2296-665X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2741535-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Climate, American Meteorological Society, Vol. 35, No. 22 ( 2022-11-15), p. 7455-7479
    Abstract: It is well accepted that global circulation models equipped with stable water isotopologues help us better understand the relationships between atmospheric circulation changes and isotope records in paleoclimate archives. Still, isotope-enabled models do not disentangle the different processes affecting precipitation isotopic compositions. Furthermore, the relevance of this model-oriented approach relies on the realism of the modeled isotope results, which would support the interpretation of the proxy records in terms of modeled climate changes. To alleviate these limitations, the newly developed WRF-Hydro-iso-tag, a version of the isotope-enabled regional coupled model WRF-Hydro-iso enhanced with an isotope-tracing procedure, is presented. Physics-based WRF-Hydro-iso-tag ensembles are used to regionally downscale the isotope-enabled Community Earth System Model for southern Africa, for two 10-yr slices of mid-Holocene and preindustrial times. The isotope-tracing procedure is tailored to assess the origin of the hydrogen isotope deuterium contained in southern African precipitation, between the Atlantic and Indian Oceans. In comparison to the global model, WRF-Hydro-iso-tag simulates lower precipitation amounts with more regional details, as well as mid-Holocene-to-preindustrial changes in precipitation isotopic compositions that better match plant-wax deuterium records from two marine sediment cores off the Orange and Limpopo River basins. Linear relationships between mid-Holocene-to-preindustrial changes in temperature, precipitation amount, moisture source, and precipitation deuterium compositions are derived from the ensemble results. A deuterium enrichment in the Orange River-related sediment core may not be related to an aridification but rather indicate a summer circulation change enabling a larger contribution of more isotopically enriched moisture from the Atlantic Ocean. Significance Statement The knowledge of past climates is crucial for understanding our Earth system and apprehending future climate change. Plant materials in sediment archives contain atoms of hydrogen from past precipitation that allow paleoclimate reconstructions, using compositions of the hydrogen isotope deuterium. However, in the tropics, deuterium-depleted plant remains can either denote a wetter climate phase or a change in atmospheric circulation patterns with longer distances between ocean evaporation and land precipitation. This work provides an innovative dynamical downscaling method of global paleoclimate models to disentangle the effects of precipitation amount change and moisture source change on deuterium records, and ultimately to improve paleoclimate reconstructions. The interpretation of a deuterium enrichment in a marine sediment core as a marker for aridification is revised. The enrichment caused by an atmospheric circulation change bringing a larger amount of more isotopically enriched moisture flow from the Atlantic Ocean to southern African precipitation would be a more physically sound explanation.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 8 ( 2020-12-3)
    Abstract: Northern Africa’s past climate is characterized by a prolonged humid period known as the African Humid Period (AHP), giving origin to the “Green Sahara” and supporting human settlements into areas that are now desert. The spatial and temporal extent of climate change associated with the AHP is, however, subject to ongoing debate. Uncertainties arise from the complex nature of African climate, which is controlled by the strength and interactions of different monsoonal systems, resulting in meridional shifts in rainfall belts and zonal movements of the Congo Air Boundary. Here, we examine a ∼12,500-years record of hydroclimate variability from Lake Dendi located in the Ethiopian highlands based on a combination of plant-wax-specific hydrogen (δD) and carbon (δ 13 C) isotopes. In addition, pollen data from the same sediment core are used to investigate the response of the regional vegetation to changing climate. Our δD record indicates high precipitation during peak AHP (ca. 10 to 8 ka BP) followed by a gradual transition toward a drier late Holocene climate. Likewise, vegetation cover changed from predominant grassland toward an arid montane forest dominated by Juniperus and Podocarpus accompanied by a general reduction of understory grasses. This trend is corroborated by δ 13 C values pointing to an increased contribution of C 3 plants during the mid-to late Holocene. Peak aridity occurred around 2 ka BP, followed by a return to a generally wetter climate possibly linked to enhanced Indian Ocean Monsoon strength. During the last millennium, increased anthropogenic activity, i.e., deforestation and agriculture is indicated by the pollen data, in agreement with intensified human impact recorded for the region. The magnitude of δD change (40‰) between peak wet conditions and late Holocene aridity is in line with other regional δD records of East Africa influenced by the CAB. The timing and pace of aridification parallels those of African and Indian monsoon records indicating a gradual response to local insolation change. Our new record combining plant-wax δD and δ 13 C values with pollen highlights the sensitive responses of the regional vegetation to precipitation changes in the Ethiopian highlands.
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2741235-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...