GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 3 ( 2012-01-17), p. 853-857
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 3 ( 2012-01-17), p. 853-857
    Abstract: The benefits of bioluminescence for nonsymbiotic marine bacteria have not been elucidated fully. One of the most commonly cited explanations, proposed more than 30 y ago, is that bioluminescence augments the propagation and dispersal of bacteria by attracting fish to consume the luminous material. This hypothesis, based mostly on the prevalence of luminous bacteria in fish guts, has not been tested experimentally. Here we show that zooplankton that contacts and feeds on the luminescent bacterium Photobacterium leiognathi starts to glow, and demonstrate by video recordings that glowing individuals are highly vulnerable to predation by nocturnal fish. Glowing bacteria thereby are transferred to the nutritious guts of fish and zooplankton, where they survive digestion and gain effective means for growth and dispersal. Using bioluminescence as bait appears to be highly beneficial for marine bacteria, especially in food-deprived environments of the deep sea.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2004
    In:  Proceedings of the National Academy of Sciences Vol. 101, No. 17 ( 2004-04-27), p. 6692-6697
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 101, No. 17 ( 2004-04-27), p. 6692-6697
    Abstract: Practicing certain visual tasks leads, as a result of a process termed “perceptual learning,” to a significant improvement in performance. Learning is specific for basic stimulus features such as local orientation, retinal location, and eye of presentation, suggesting modification of neuronal processes at the primary visual cortex in adults. It is not known, however, whether such low-level learning affects higher-level visual tasks such as recognition. By systematic low-level training of an adult visual system malfunctioning as a result of abnormal development (leading to amblyopia) of the primary visual cortex during the “critical period,” we show here that induction of low-level changes might yield significant perceptual benefits that transfer to higher visual tasks. The training procedure resulted in a 2-fold improvement in contrast sensitivity and in letter-recognition tasks. These findings demonstrate that perceptual learning can improve basic representations within an adult visual system that did not develop during the critical period.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2004
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 1994
    In:  Science Vol. 264, No. 5166 ( 1994-06-17), p. 1764-1768
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 264, No. 5166 ( 1994-06-17), p. 1764-1768
    Abstract: Failure of axons of the central nervous system in adult mammals to regenerate spontaneously after injury is attributed in part to inhibitory molecules associated with oligodendrocytes. Regeneration of central nervous system axons in fish is correlated with the presence of a transglutaminase. This enzyme dimerizes interleukin-2, and the product is cytotoxic to oligodendrocytes in vitro. Application of this nerve-derived transglutaminase to rat optic nerves, in which the injury had caused the loss of visual evoked potential response to light, promoted the recovery of that response within 6 weeks after injury. Transmission electron microscopy analysis revealed the concomitant appearance of axons in the distal stump of the optic nerve.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 1994
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...