GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 35 ( 2019-08-27), p. 17201-17206
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 35 ( 2019-08-27), p. 17201-17206
    Abstract: Tropical rainfall variability is closely linked to meridional shifts of the Intertropical Convergence Zone (ITCZ) and zonal movements of the Walker circulation. The characteristics and mechanisms of tropical rainfall variations on centennial to decadal scales are, however, still unclear. Here, we reconstruct a replicated stalagmite-based 2,700-y-long, continuous record of rainfall for the deeply convective northern central Indo-Pacific (NCIP) region. Our record reveals decreasing rainfall in the NCIP over the past 2,700 y, similar to other records from the northern tropics. Notable centennial- to decadal-scale dry climate episodes occurred in both the NCIP and the southern central Indo-Pacific (SCIP) during the 20th century [Current Warm Period (CWP)] and the Medieval Warm Period (MWP), resembling enhanced El Niñ o -like conditions. Further, we developed a 2,000-y-long ITCZ shift index record that supports an overall southward ITCZ shift in the central Indo-Pacific and indicates southward mean ITCZ positions during the early MWP and the CWP. As a result, the drying trend since the 20 th century in the northern tropics is similar to that observed during the past warm period, suggesting that a possible anthropogenic forcing of rainfall remains indistinguishable from natural variability.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 45 ( 2019-11-05), p. 22512-22517
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 45 ( 2019-11-05), p. 22512-22517
    Abstract: El Niño’s intensity change under anthropogenic warming is of great importance to society, yet current climate models’ projections remain largely uncertain. The current classification of El Niño does not distinguish the strong from the moderate El Niño events, making it difficult to project future change of El Niño’s intensity. Here we classify 33 El Niño events from 1901 to 2017 by cluster analysis of the onset and amplification processes, and the resultant 4 types of El Niño distinguish the strong from the moderate events and the onset from successive events. The 3 categories of El Niño onset exhibit distinct development mechanisms. We find El Niño onset regime has changed from eastern Pacific origin to western Pacific origin with more frequent occurrence of extreme events since the 1970s. This regime change is hypothesized to arise from a background warming in the western Pacific and the associated increased zonal and vertical sea-surface temperature (SST) gradients in the equatorial central Pacific, which reveals a controlling factor that could lead to increased extreme El Niño events in the future. The Coupled Model Intercomparison Project phase 5 (CMIP5) models’ projections demonstrate that both the frequency and intensity of the strong El Niño events will increase significantly if the projected central Pacific zonal SST gradients become enhanced. If the currently observed background changes continue under future anthropogenic forcing, more frequent strong El Niño events are anticipated. The models’ uncertainty in the projected equatorial zonal SST gradients, however, remains a major roadblock for faithful prediction of El Niño’s future changes.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2022
    In:  Proceedings of the National Academy of Sciences Vol. 119, No. 23 ( 2022-06-07)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 23 ( 2022-06-07)
    Abstract: An anomalous strengthening in western Pacific subtropical high (WPSH) increases moisture transport from the tropics to East Asia, inducing anomalous boreal summer monsoonal rainfall, causing extreme weather events in the densely populated region. Such positive WPSH anomalies can be induced by central Pacific (CP) cold sea-surface temperature (SST) anomalies of an incipient La Niña and warm anomalies in the Indian and/or the tropical Atlantic Ocean, both promoting anticyclonic anomalies over the northwestern Pacific region. How variability of the WPSH, its extremity, and the associated mechanisms might respond to greenhouse warming remains elusive. Using outputs from 32 of the latest climate models, here we show an increase in WPSH variability translating into a 73% increase in frequency of strong WPSH events under a business-as-usual emission scenario, supported by a strong intermodel consensus. Under greenhouse warming, response of tropical atmosphere convection to CP SST anomalies increases, as does the response of the northwestern Pacific anticyclonic circulation. Thus, climate extremes such as floods in the Yangtze River Valley of East China associated with WPSH variability are likely to be more frequent and more severe.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 374, No. 6563 ( 2021-10)
    Abstract: Climate variability in the tropical Pacific affects global climate on a wide range of time scales. On interannual time scales, the tropical Pacific is home to the El Niño–Southern Oscillation (ENSO). Decadal variations and changes in the tropical Pacific, referred to here collectively as tropical Pacific decadal variability (TPDV), also profoundly affect the climate system. Here, we use TPDV to refer to any form of decadal climate variability or change that occurs in the atmosphere, the ocean, and over land within the tropical Pacific. “Decadal,” which we use in a broad sense to encompass multiyear through multidecadal time scales, includes variability about the mean state on decadal time scales, externally forced mean-state changes that unfold on decadal time scales, and decadal variations in the behavior of higher-frequency modes like ENSO.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2019
    In:  Science Vol. 363, No. 6430 ( 2019-03)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 363, No. 6430 ( 2019-03)
    Abstract: The El Niño–Southern Oscillation (ENSO), which originates in the Pacific, is the strongest and most well-known mode of tropical climate variability. Its reach is global, and it can force climate variations of the tropical Atlantic and Indian Oceans by perturbing the global atmospheric circulation. Less appreciated is how the tropical Atlantic and Indian Oceans affect the Pacific. Especially noteworthy is the multidecadal Atlantic warming that began in the late 1990s, because recent research suggests that it has influenced Indo-Pacific climate, the character of the ENSO cycle, and the hiatus in global surface warming. Discovery of these pantropical interactions provides a pathway forward for improving predictions of climate variability in the current climate and for refining projections of future climate under different anthropogenic forcing scenarios.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...