GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    The Royal Society ; 2017
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 284, No. 1855 ( 2017-05-31), p. 20170509-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 284, No. 1855 ( 2017-05-31), p. 20170509-
    Kurzfassung: Large and productive fisheries occur in regions experiencing or projected to experience ocean acidification. Anchoveta ( Engraulis ringens ) constitute the world's largest single-species fishery and live in one of the ocean's highest p CO 2 regions. We investigated the relationship of the distribution and abundance of Anchoveta eggs and larvae to natural gradients in p CO 2 in the Peruvian upwelling system. Eggs and larvae, zooplankton, and data on temperature, salinity, chlorophyll a and p CO 2 were collected during a cruise off Peru in 2013. p CO 2 ranged from 167–1392 µatm and explained variability in egg presence, an index of spawning habitat. Zooplankton abundance explained variability in the abundance of small larvae. Within the main spawning and larva habitats (6–10°S), eggs were found in cool, low-salinity, and both extremely low (less than 200 µatm) and high (more than 900 µatm) p CO 2 waters, and larvae were collected in warmer, higher salinity, and moderate (400–600 µatm) p CO 2 waters. Our data support the hypothesis that Anchoveta preferentially spawned at high p CO 2 and these eggs had lower survival. Enhanced understanding of the influence of p CO 2 on Anchoveta spawning and larva mortality, together with p CO 2 measurements, may enable predictions of ocean acidification effects on Anchoveta and inform adaptive fisheries management.
    Materialart: Online-Ressource
    ISSN: 0962-8452 , 1471-2954
    Sprache: Englisch
    Verlag: The Royal Society
    Publikationsdatum: 2017
    ZDB Id: 1460975-7
    SSG: 12
    SSG: 25
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Biogeosciences, Copernicus GmbH, Vol. 18, No. 17 ( 2021-09-07), p. 4889-4917
    Kurzfassung: Abstract. Organic matter production by cyanobacteria blooms is a major environmental concern for the Baltic Sea, as it promotes the spread of anoxic zones. Partial pressure of carbon dioxide (pCO2) measurements carried out on Ships of Opportunity (SOOP) since 2003 have proven to be a powerful tool to resolve the carbon dynamics of the blooms in space and time. However, SOOP measurements lack the possibility to directly constrain depth-integrated net community production (NCP) in moles of carbon per surface area due to their restriction to the sea surface. This study tackles the knowledge gap through (1) providing an NCP best guess for an individual cyanobacteria bloom based on repeated profiling measurements of pCO2 and (2) establishing an algorithm to accurately reconstruct depth-integrated NCP from surface pCO2 observations in combination with modelled temperature profiles. Goal (1) was achieved by deploying state-of-the-art sensor technology from a small-scale sailing vessel. The low-cost and flexible platform enabled observations covering an entire bloom event that occurred in July–August 2018 in the Eastern Gotland Sea. For the biogeochemical interpretation, recorded pCO2 profiles were converted to CT*, which is the dissolved inorganic carbon concentration normalised to alkalinity. We found that the investigated bloom event was dominated by Nodularia and had many biogeochemical characteristics in common with blooms in previous years. In particular, it lasted for about 3 weeks, caused a CT* drawdown of 90 µmol kg−1, and was accompanied by a sea surface temperature increase of 10 ∘C. The novel finding of this study is the vertical extension of the CT* drawdown up to the compensation depth located at around 12 m. Integration of the CT* drawdown across this depth and correction for vertical fluxes leads to an NCP best guess of ∼1.2 mol m−2 over the productive period. Addressing goal (2), we combined modelled hydrographical profiles with surface pCO2 observations recorded by SOOP Finnmaid within the study area. Introducing the temperature penetration depth (TPD) as a new parameter to integrate SOOP observations across depth, we achieve an NCP reconstruction that agrees to the best guess within 10 %, which is considerably better than the reconstruction based on a classical mixed-layer depth constraint. Applying the TPD approach to almost 2 decades of surface pCO2 observations available for the Baltic Sea bears the potential to provide new insights into the control and long-term trends of cyanobacteria NCP. This understanding is key for an effective design and monitoring of conservation measures aiming at a Good Environmental Status of the Baltic Sea.
    Materialart: Online-Ressource
    ISSN: 1726-4189
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2021
    ZDB Id: 2158181-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Biogeosciences, Copernicus GmbH, Vol. 18, No. 4 ( 2021-02-23), p. 1351-1373
    Kurzfassung: Abstract. The ocean and inland waters are two separate regimes, with concentrations in greenhouse gases differing on orders of magnitude between them. Together, they create the land–ocean aquatic continuum (LOAC), which comprises itself largely of areas with little to no data with regards to understanding the global carbon system. Reasons for this include remote and inaccessible sample locations, often tedious methods that require collection of water samples and subsequent analysis in the lab, and the complex interplay of biological, physical and chemical processes. This has led to large inconsistencies, increasing errors and has inevitably lead to potentially false upscaling. A set-up of multiple pre-existing oceanographic sensors allowing for highly detailed and accurate measurements was successfully deployed in oceanic to remote inland regions over extreme concentration ranges. The set-up consists of four sensors simultaneously measuring pCO2, pCH4 (both flow-through, membrane-based non-dispersive infrared (NDIR) or tunable diode laser absorption spectroscopy (TDLAS) sensors), O2 and a thermosalinograph at high resolution from the same water source. The flexibility of the system allowed for deployment from freshwater to open ocean conditions on varying vessel sizes, where we managed to capture day–night cycles, repeat transects and also delineate small-scale variability. Our work demonstrates the need for increased spatiotemporal monitoring and shows a way of homogenizing methods and data streams in the ocean and limnic realms.
    Materialart: Online-Ressource
    ISSN: 1726-4189
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2021
    ZDB Id: 2158181-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Nature, Springer Science and Business Media LLC, Vol. 565, No. 7737 ( 2019-1), p. 73-77
    Materialart: Online-Ressource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2019
    ZDB Id: 120714-3
    ZDB Id: 1413423-8
    SSG: 11
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...