GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • GEOMAR Katalog / E-Books  (2)
  • 547.70457  (2)
Publikationsart
  • GEOMAR Katalog / E-Books  (2)
Datenquelle
Verlag/Herausgeber
Sprache
Erscheinungszeitraum
DDC
  • 1
    Online-Ressource
    Online-Ressource
    Milton :Taylor & Francis Group,
    Schlagwort(e): Conjugated polymers. ; Conducting polymers. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (1525 pages)
    Ausgabe: 4th ed.
    ISBN: 9781351660235
    Serie: Handbook of Conducting Polymers, Fourth Edition Series
    DDC: 547.70457
    Sprache: Englisch
    Anmerkung: Cover -- Conjugated Polymers: Properties, Processing, and Applications -- Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface to Fourth Edition -- Acknowledgments -- Editors -- Contributors -- 1 Conjugated Polymer-Based OFET Devices -- 1.1 Introduction -- 1.2 State of OFET Technology/Applications/Commercialization Efforts -- 1.3 Recent Developments in Polymer OFET Materials - From Crystalline Polythiophenes to Donor-Acceptor Polymers -- 1.4 Charge Transport in Polymer OFETs -- 1.5 Role of Disorder -- 1.6 Charge Carrier Mobility and Artefacts -- 1.7 Stability of OFETs -- 1.8 Outlook -- References -- 2 Electrical Doping of Organic Semiconductors with Molecular Oxidants and Reductants -- 2.1 Introduction -- 2.2 Basics of Doping in Organic Materials -- Comparison to Doping of Inorganic Materials -- Effects of Doping -- 2.3 Criteria for Dopant Choice -- 2.4 Survey of Dopants -- p-Dopants -- n-Dopants -- 2.5 Device Examples -- OLEDs -- OFETs -- OPVs -- 2.6 Summary -- Acknowledgments -- References -- 3 Electric Transport Properties in PEDOT Thin Films -- 3.1 Introduction -- 3.2 Chemistry of PEDOT -- Chemical vs. Electrochemical Polymerization of PEDOT:X -- Chemical Water Dispersion: PEDOT:PSS -- PEDOT:Biopolymer Dispersion Polymerization -- Tuning the Oxidation/Doping Level Chemically vs. Electrochemically -- 3.3 Electronic Structure of PEDOT: From a Single Chain to a Thin Film -- Nature of Charge Carriers and Electronic Structure of PEDOT Chains -- Density of States of PEDOT: From a Single Chain to a Thin Film -- Band Gap and Optical Transitions in PEDOT -- 3.4 Morphology of PEDOT -- Brief Review of Experimental Data for PEDOT:X and PEDOT:PSS (GIWAXS, TEM, AFM) -- Morphology of PEDOT: A Theoretical Perspective -- 3.5 Electrical Conductivity -- Basic Thermodynamics of Thermoelectrical Processes -- Temperature Dependence. , Secondary Doping -- Acid-Base Effect -- 3.6 Optical Conductivity -- Basic Definitions and Relations -- Methodologies for Measuring the Dielectric Function -- Optical Conductivity and Permittivity of PEDOT -- Concluding Remarks on PEDOT Optical Conductivity -- 3.7 Transport Properties of PEDOT: A Theoretical Perspective -- Basics of the Hopping Transport: Semi-Analytical Approach and Kinetic Monte Carlo -- Boltzmann Approach to Conductivity Based on the Model of an Ideal Crystal -- Multi-Scale Modelling Based on the Realistic Morphology -- 3.8 Mixed Electron-Ion Transport in PEDOT -- Devices Utilizing Mixed Electron and Ion Conductivity -- Experimental Results -- Modelling of Mixed Electron-Ion Transport in PEDOT -- Calculation of Ion Diffusion in PEDOT -- 3.9 Conclusions and Outlook -- Acknowledgments -- References -- 4 Thermoelectric Properties of Conjugated Polymers -- 4.1 Introduction -- 4.2 Models of Thermoelectric Properties -- 4.3 Microstructure of Semiconducting Polymers -- 4.4 Thermoelectric Power Factor of Semiconducting Polymers -- Introduction -- Polyacetylene -- Polyaniline -- Poly(ethylenedioxythiophene) -- Poly(3-hexylthiophene) -- Poly( 2,5-bis(3- alkylthiophen-2 -yl) thieno [3,2- b]thiophene) -- Co-Polymers -- n-Type Polymers -- 4.5 Thermal Conductivity of Polymers -- Introduction -- Thermal Conductivity of Undoped Semiconducting Polymers -- Electronic Contribution to Thermal Conductivity -- 4.6 ZT for Polymers -- 4.7 Outlook -- References -- 5 Electrochemistry of Conducting Polymers -- Introduction -- 5.1 Fundamentals -- Electropolymerization: Mechanism, Techniques, Synthesis Control -- Electrochemical Doping: Charge Carriers, Redox vs. Capacitive Behavior and Related Properties -- Relaxation Effects -- Electrochemical Characterization of an ECP in a Given Electrolytic Medium -- Determination of HOMO-LUMO Levels by Cyclic Voltammetry. , 5.2 New Trends in Electrosynthesis of Conducting Polymers -- New Monomers -- New Electrolytic Media -- 5.3 Nano-Objects and Nanocomposites -- Nano-Objects -- Nanocomposites -- 5.4 Applications -- Energy Storage -- Actuators and Drug Delivery -- Molecular Imprinting ECP -- Biosensors and Related Materials -- Anticorrosion -- Electrochromism and Electrofluorochromism -- Conclusion and Future -- References -- 6 Electrochromism in Conjugated Polymers - Strategies for Complete and Straightforward Color Control -- 6.1 Introduction to Electrochromic Polymers -- 6.2 Electrochromism in Conjugated Polymers -- 6.3 The Electrochromic Toolbox -- Electrochromic/Optical Contrast -- Colorimetric Analysis -- Switching Speed/Response Time -- Coloration Efficiency/Charge-to-Switch -- Optical Memory/Bistability -- Switching Stability -- 6.4 Synthesis of Soluble Electrochromic Polymers -- 6.5 Developing Structure- Property Relationships for Color Control in Cathodically Coloring ECPs -- Effect of the Choice of Heterocycle, the Building Block of ECPs -- Steric Effects of Introducing Functional Groups -- Expanding the Color Palette through Copolymerization -- Developing Broadly Absorbing Systems for Black and Brown Hues -- 6.6 Anodically Coloring Systems -- 6.7 Controlling Solubility, Contrast, and Redox Properties -- Tuning Solubility -- Tuning Contrast -- Tuning Redox and Switching Properties -- 6.8 Conclusions -- Acknowledgments and Notes -- References -- 7 Mechanical Properties of Semiconducting Polymers -- 7.1 Introduction and Background -- Semiconducting Polymers as a Subset of All Solid Polymers -- 7.2 Deformation in Solid Polymers -- Mediation of Mechanical Energy -- Elasticity and Plasticity -- Fracture -- 7.3 Mechanical Properties and Measurement Techniques -- Overview of Mechanical Properties -- Common Measurement Techniques -- 7.4 Effects of Physical Parameters. , Effects of Elastic Mismatch and Adhesion -- Effects of Film Thickness -- Effects of Strain Rate -- 7.5 Effects of Molecular Structure and Microstructure -- Role of Molecular Weight -- Role of Alkyl Side Chains -- Role of Molecular Structure and Backbone Rigidity -- Role of Intermolecular Packing -- 7.6 Glass Transition Temperature and Measurement Techniques -- The Glass Transition in Semiconducting Polymers -- Techniques to Measure the T[sub(g)] of Semiconducting Polymers -- 7.7 Theoretical Modeling -- Molecular Structure and Atomistic Simulations -- Polymer-Chain Size and Phase Behavior -- Coarse-Grained Simulations and Continuum-Based Methods -- 7.8 Composite Systems -- Effects of Molecular Mixing -- Polymer-Fullerene Composites -- 7.9 Conclusion and Outlook -- References -- 8 Magnetic Field Effects in Organic Semiconductors -- Low and High Fields, Steady State and Time Resolved -- 8.1 Introduction -- 8.2 Review of Various Mechanisms -- The Hyperfine Mechanism -- Mechanisms Related to Triplet Excitons -- The Δg Mechanism -- Thermal Spin Polarization -- Magnetic Field Effect in Excited-State Spectroscopies of Films -- Steady State -- Time Resolved Magnetic Field Effects -- 8.3 Experimental Studies -- Magnetic Field Effects in Organic Devices at Low Fields -- Magneto-Photo-Induced Absorption in Films -- High Field Magneto-Photocurrent in Organic Bulk Hetero-Junction Photo-Voltaic Cells -- Transient Magneto-Photoinduced Absorption in Donor-Acceptor Copolymers -- 8.4 Summary -- References -- 9 Organic Electro-Optic Materials -- 9.1 Historical Overview -- 9.2 Introduction to Electro-Optic (EO) Activity -- 9.3 Pre-2005 Polymeric OEO Materials and Devices -- 9.4 Post-2005 Macromolecular OEO Materials and Devices -- 9.5 Applications -- 9.6 Other Organic Materials for Optical Modulation -- 9.7 Future Prognosis -- Acknowledgments -- References. , 10 Establishing the Thermal Phase Behavior and its Influence on Optoelectronic Properties of Semiconducting Polymers -- 10.1 Introduction -- 10.2 Single-Component Systems -- Crystallization and Melting -- Glass Transition -- Polymorphism -- Liquid Crystallinity -- 10.3 Multi-Component Systems -- Polymer Semiconductor:Solvent Systems -- Polymer Semiconductor:Small Molecule Systems -- Polymer Semiconductor:Polymer Systems -- 10.4 Time/Temperature/Transformation Phase Diagrams -- 10.5 Conclusions -- References -- 11 Poly(3-alkylthiophenes): Controlled Manipulation of Microstructure and its Impact on Charge Transport -- 11.1 Introduction -- 11.2 P3AT Structural Characterization -- Small Angle Neutron Scattering -- UV-Vis Absorbance -- Differential Scanning Calorimetry -- X-Ray Scattering -- Atomic Force Microscopy -- Charge Carrier Mobility -- Concluding Remarks -- 11.3 Advances in Solution Processing Methods -- 11.4 Deposition Methods -- Spin-Coating -- Drop-Casting -- Inkjet Printing -- Dip-Coating -- Solution Shearing -- 11.5 Semiconductor Crystalline Structure in Flexible and Stretchable Devices -- 11.6 Conclusions -- References -- 12 Microstructural Characterization of Conjugated Organic Semiconductors by X-Ray Scattering -- 12.1 Introduction -- 12.2 Fundamentals of X-Ray Scattering -- Wide-Angle X-Ray Scattering (WAXS) -- Small Angle X-Ray Scattering (SAXS) -- 12.3 Applications in Conjugated Semiconductors (Selected Examples) -- Crystal Structure and Molecular Packing of Small-Molecules for Organic Thin-Film Transistor (OTFT) -- Estimation of Volume Fraction of Phases in Bulk Heterojunction (BHJ) Photovoltaics -- Probing the Surface and the Bulk of Small-Molecule Thin Films -- Microstructural Evolution for P3HT:PCBM During Spin-Coating from One Solvent -- In Situ GISAXS for Probing Phase-Separation Evolution using Multiphase Modeling Based onTSI. , Co-Solvent Processing for Reducing Domains Over-Coarsening by Influencing the Liquid-Liquid Phase Separation.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Milton :Taylor & Francis Group,
    Schlagwort(e): Organic conductors. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: This book covers properties, processing, and applications of conducting polymers and discusses properties and characterization, including photophysics and transport. It covers processing and morphology of conducting polymers, including topics such as printing, thermal processing, and morphology evolution.
    Materialart: Online-Ressource
    Seiten: 1 online resource (847 pages)
    Ausgabe: 4th ed.
    ISBN: 9781315159294
    Serie: Handbook of Conducting Polymers, Fourth Edition Series
    DDC: 547.70457
    Sprache: Englisch
    Anmerkung: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface to Fourth Edition -- Acknowledgments -- Editors -- Contributors -- 1: Conjugated Polymer- Based OFET Devices -- Mark Nikolka and Henning Sirringhaus -- 1.1 Introduction -- 1.2 State of OFET Techn​ology​/Appl​icati​ons/ C​ommer​ciali​zatio​n Efforts -- 1.3 Recent Developments in Polymer OFET Materials - From Crystalline Polythiophenes to Donor-Acceptor Polymers -- 1.4 Charge Transport in Polymer OFETs -- 1.5 Role of Disorder -- 1.6 Charge Carrier Mobility and Artefacts -- 1.7 Stability of OFETs -- 1.8 Outlook -- References -- 2: Electrical Doping of Organic Semiconductors with Molecular Oxidants and Reductants -- Stephen Barlow, Seth R. Marder, Xin Lin, Fengyu Zhang, and Antoine Kahn -- 2.1 Introduction -- 2.2 Basics of Doping in Organic Materials -- 2.2.1 Comparison to Doping of Inorganic Materials -- 2.2.2 Effects of Doping -- 2.2.2.1 Enhancement of Conductivity -- 2.2.2.2 Lowering of Injection Barriers -- 2.3 Criteria for Dopant Choice -- 2.4 Survey of Dopants -- 2.4.1 p-Dopants -- 2.4.1.1 Inorganic p-Dopants -- 2.4.1.2 Organic and Metal-Organic p-Dopants -- 2.4.2 n-Dopants -- 2.4.2.1 One-Electron Reductants -- 2.4.2.2 Air-Stable n-Dopants -- 2.5 Device Examples -- 2.5.1 OLEDs -- 2.5.2 OFETs -- 2.5.3 OPVs -- 2.6 Summary -- Acknowledgments -- References -- 3: Electric Transport Properties in PEDOT Thin Films -- Nara Kim, Ioannis Petsagkourakis, Shangzhi Chen, Magnus Berggren, Xavier Crispin, Magnus P. Jonsson, and Igor Zozoulenko -- 3.1 Introduction -- 3.2 Chemistry of PEDOT -- 3.2.1 Chemical vs. Electrochemical Polymerization of PEDOT:X -- 3.2.2 Chemical Water Dispersion: PEDOT:PSS -- 3.2.3 PEDOT:Biopolymer Dispersion Polymerization -- 3.2.4 Tuning the Oxidation/Doping Level Chemically vs. Electrochemically. , 3.3 Electronic Structure of PEDOT: From a Single Chain to a Thin Film -- 3.3.1 Nature of Charge Carriers and Electronic Structure of PEDOT Chains -- 3.3.2 Density of States of PEDOT: From a Single Chain to a Thin Film -- 3.3.3 Band Gap and Optical Transitions in PEDOT -- 3.4 Morphology of PEDOT -- 3.4.1 Brief Review of Experimental Data for PEDOT:X and PEDOT:PSS (GIWAXS, TEM, AFM) -- 3.4.2 Morphology of PEDOT: A Theoretical Perspective -- 3.4.2.1 Molecular Dynamics Simulation of the Morphology -- 3.4.2.2 Effect of Counter-Ions at High Oxidation Levels -- 3.4.2.3 Effect of Substrates -- 3.5 Electrical Conductivity -- 3.5.1 Basic Thermodynamics of Thermoelectrical Processes -- 3.5.2 Temperature Dependence -- 3.5.3 Secondary Doping -- 3.5.4 Acid-Base Effect -- 3.6 Optical Conductivity -- 3.6.1 Basic Definitions and Relations -- 3.6.2 Methodologies for Measuring the Dielectric Function -- 3.6.2.1 Optical Parameters from Transmittance and Reflectance Measurements -- 3.6.2.2 Terahertz Time-Domain Spectroscopy (THz-TDS) -- 3.6.2.3 Variable Angle Spectroscopic Ellipsometry (VASE) -- 3.6.3 Optical Conductivity and Permittivity of PEDOT -- 3.6.3.1 Anisotropy, Interfacial Layers, and Substrate Effects -- 3.6.3.2 Basic Permittivity Models for PEDOT: The Drude Model and Lorentzian-Broadened Harmonic Oscillators -- 3.6.3.3 The Drude-Smith Model -- 3.6.3.4 The Localization-Modified Drude Model -- 3.6.3.5 Effective Medium Approximation (EMA) and Its Applications -- 3.6.4 Concluding Remarks on PEDOT Optical Conductivity -- 3.7 Transport Properties of PEDOT: A Theoretical Perspective -- 3.7.1 Basics of the Hopping Transport: Semi-Analytical Approach and Kinetic Monte Carlo -- 3.7.2 Boltzmann Approach to Conductivity Based on the Model of an Ideal Crystal -- 3.7.3 Multi-Scale Modelling Based on the Realistic Morphology -- 3.8 Mixed Electron-Ion Transport in PEDOT. , 3.8.1 Devices Utilizing Mixed Electron and Ion Conductivity -- 3.8.2 Experimental Results -- 3.8.3 Modelling of Mixed Electron-Ion transport in PEDOT -- 3.8.4 Calculation of Ion Diffusion in PEDOT -- 3.9 Conclusions and Outlook -- Acknowledgments -- References -- 4: Thermoelectric Properties of Conjugated Polymers -- Kelly A. Peterson, Eunhee Lim, and Michael L. Chabinyc -- 4.1 Introduction -- 4.2 Models of Thermoelectric Properties -- 4.3 Microstructure of Semiconducting Polymers -- 4.4 Thermoelectric Power Factor of Semiconducting Polymers -- 4.4.1 Introduction -- 4.4.2 Polyacetylene -- 4.4.3 Polyaniline -- 4.4.4 Poly(ethylenedioxythiophene) -- 4.4.5 Poly(3-hexylthiophene) -- 4.4.6 Poly(​2,5-b​is(3-​alkyl​thiop​hen-2​-yl)t​hieno​[3,2-​b]thiophene) -- 4.4.7 Co-Polymers -- 4.4.8 n-Type Polymers -- 4.5 Thermal Conductivity of Polymers -- 4.5.1 Introduction -- 4.5.2 Thermal Conductivity of Undoped Semiconducting Polymers -- 4.5.3 Electronic Contribution to Thermal Conductivity -- 4.6 ZT for Polymers -- 4.7 Outlook -- References -- 5: Electrochemistry of Conducting Polymers -- P. Audebert and F. Miomandre -- Introduction -- 5.1 Fundamentals -- 5.1.1 Electropolymerization: Mechanism, Techniques, Synthesis Control -- 5.1.2 Electrochemical Doping: Charge Carriers, Redox vs. Capacitive Behavior and Related Properties -- 5.1.3 Relaxation Effects -- 5.1.4 Electrochemical Characterization of an ECP in a Given Electrolytic Medium -- 5.1.5 Determination of HOMO-LUMO Levels by Cyclic Voltammetry -- 5.2 New Trends in Electrosynthesis of Conducting Polymers -- 5.2.1 New Monomers -- 5.2.2 New Electrolytic Media -- 5.3 Nano-Objects and Nanocomposites -- 5.3.1 Nano-Objects -- 5.3.2 Nanocomposites -- a. Metallic Nanoparticles -- b. Carbonaceous Materials -- 5.4 Applications -- 5.4.1 Energy Storage -- 5.4.2 Actuators and Drug Delivery -- 5.4.3 Molecular Imprinting ECP. , 5.4.4 Biosensors and Related Materials -- 5.4.5 Anticorrosion -- 5.4.6 Electrochromism and Electrofluorochromism -- Conclusion and Future -- References -- 6: Electrochromism in Conjugated Polymers -  Strategies for Complete and Straightforward Color Control -- Anna M. Ö sterholm, D. Eric Shen, and John R. Reynolds -- 6.1 Introduction to Electrochromic Polymers -- 6.2 Electrochromism in Conjugated Polymers -- 6.3 The Electrochromic Toolbox -- 6.3.1 Electrochromic/Optical Contrast -- 6.3.2 Colorimetric Analysis -- 6.3.3 Switching Speed/Response Time -- 6.3.4 Coloration Efficiency/Charge-to-Switch -- 6.3.5 Optical Memory/Bistability -- 6.3.6 Switching Stability -- 6.4 Synthesis of Soluble Electrochromic Polymers -- 6.5 Developing Structure- Property Relationships for Color Control in Cathodically Coloring ECPs -- 6.5.1 Effect of the Choice of Heterocycle, the Building Block of ECPs -- 6.5.2 Steric Effects of Introducing Functional Groups -- 6.5.2.1 Fine-Tuning Coloration Through 3,4-Alkyl Substitutions of Five-Membered Heterocycles -- 6.5.2.2 Alkylenedioxy-Substitution -  a Route to Colored-to-Clear Electrochromic Polymers -- 6.5.2.3 Effect of Using Fused Systems -- 6.5.3 Expanding the Color Palette through Copolymerization -- 6.5.3.1 Modulating Torsional Strain and Tuning Absorption Throughout the Visible Using All-Donor Copolymers -- 6.5.3.2 Donor- Acceptor Polymers and Routes for Achieving Green and Cyan ECPs -- 6.5.4 Developing Broadly Absorbing Systems for Black and Brown Hues -- 6.6 Anodically Coloring Systems -- 6.7 Controlling Solubility, Contrast, and Redox Properties -- 6.7.1 Tuning Solubility -- 6.7.2 Tuning Contrast -- 6.7.3 Tuning Redox and Switching Properties -- 6.8 Conclusions -- Acknowledgments and Notes -- References -- 7: Mechanical Properties of Semiconducting Polymers. , Mohammad A. Alkhadra, Andrew T. Kleinschmidt, Samuel E. Root, Daniel Rodriquez, Adam D. Printz, Suchol Savagatrup, and Darren J. Lipomi -- 7.1 Introduction and Background -- 7.1.1 Semiconducting Polymers as a Subset of All Solid Polymers -- 7.2 Deformation in Solid Polymers -- 7.2.1 Mediation of Mechanical Energy -- 7.2.2 Elasticity and Plasticity -- 7.2.3 Fracture -- 7.3 Mechanical Properties and Measurement Techniques -- 7.3.1 Overview of Mechanical Properties -- 7.3.2 Common Measurement Techniques -- 7.4 Effects of Physical Parameters -- 7.4.1 Effects of Elastic Mismatch and Adhesion -- 7.4.2 Effects of Film Thickness -- 7.4.3 Effects of Strain Rate -- 7.5 Effects of Molecular Structure and Microstructure -- 7.5.1 Role of Molecular Weight -- 7.5.2 Role of Alkyl Side Chains -- 7.5.3 Role of Molecular Structure and Backbone Rigidity -- 7.5.4 Role of Intermolecular Packing -- 7.6 Glass Transition Temperature and Measurement Techniques -- 7.6.1 The Glass Transition in Semiconducting Polymers -- 7.6.2 Techniques to Measure the Tg of Semiconducting Polymers -- 7.7 Theoretical Modeling -- 7.7.1 Molecular Structure and Atomistic Simulations -- 7.7.2 Polymer-Chain Size and Phase Behavior -- 7.7.3 Coarse-Grained Simulations and Continuum-Based Methods -- 7.8 Composite Systems -- 7.8.1 Effects of Molecular Mixing -- 7.8.2 Polymer-Fullerene Composites -- 7.9 Conclusion and Outlook -- References -- 8: Magnetic Field Effects in Organic Semiconductors -- Low and High Fields, Steady State and Time Resolved -- Eitan Ehrenfreund and Z. Valy Vardeny -- 8.1 Introduction -- 8.2 Review of Various Mechanisms -- 8.2.1 The Hyperfine Mechanism -- 8.2.2 Mechanisms Related to Triplet Excitons -- 8.2.3 The ∆g Mechanism -- 8.2.4 Thermal Spin Polarization -- 8.2.5 Magnetic Field Effect in Excited-State Spectroscopies of Films -- Steady State. , 8.2.6 Time Resolved Magnetic Field Effects.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...