GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 436.2005, 7050, E4-, (2 S.) 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Muscheler et al. claim that the solar activity affecting cosmic rays was much higher in the past than we deduced from 14C measurements. However, this claim is based on a problematic normalization and is in conflict with independent results, such as the ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 127 (1990), S. 405-412 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Analyzing the average over a year (a) and over a month (b) of Wolf numbers and radiocarbon data (c), we have obtained the dimensions d of the solar attractor which are: 3.3 (a), 4.3 (b), 4.7 (c). During the Maunder minimum such a dimension turns out to be significantly higher: 8.0 (c); whereas during the period of a phase catastrophe (1792–1828) Wolf numbers averaged over a month yield d = 3.0 (b). We have also investigated the sensitivity of our inferences to the number of available experimental points. Positive values of the Kolmogorov entropy and first Lyapunov exponent explicitly show the stochastic behaviour of the Sun.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Response of Alma-Ata neutron monitor for solar neutrons from the 15 June 1991 was studied. We considered this response as a test for various scenarios of proton acceleration during the flare. The analysis of neutron monitor is an evidence in favour of the assumption of two acts of proton acceleration at impulsive and post-impulsive phases of the flare.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A joint analysis of neutron monitor and GOES data is performed to study the production of high-energy neutrons at the Sun. The main objects of the research are the spectrum of 〉50 MeV neutrons and a possible spectrum of primary (interacting) protons which produced those neutrons during the major 1990 May 24 solar flare. Different possible scenarios of the neutron production are presented. The high magnitude of the 1990 May 24 neutron event provided an opportunity to detect neutron decay protons of higher energies than ever before. We compare predictions of the proposed models of neutron production with the observations of protons on board GOES 6 and 7. It is shown that the ‘precursor’ in high-energy GOES channels observed during 20:55–21:09 UT can be naturally explained as originating from decay of neutrons in the interplanetary medium. The ratio of counting rates observed in different GOES channels can ensure the selection of the model parameters. The set of experimental data can be explained in the framework of a scenario which assumes the existence of two components of interacting protons in the flare. A hard spectrum component (the first component) generates neutrons during a short time while the interaction of the second (soft spectrum) component lasts longer. Alternative scenarios are found to be of lesser likelihood. The intensity-time profile of neutron - decay protons as predicted in the framework of the two-component exponential model of neutron production (Kocharov et al., 1994a) is in an agreement with the proton profiles observed on board GOES. We compare the deduced characteristics of interacting high-energy protons with the characteristics of protons escaping into the interplanetary medium. It is shown that, in the 100–1000 MeV range, the spectrum of the second component of interacting protons was close to the spectrum of the prompt component of interplanetary protons. However, it is most likely that, at ∼300 MeV, the interacting proton spectrum was slightly softer than the spectrum of interplanetary protons. An analysis of gamma-ray emission is required to deduce the spectrum of interacting protons below 100 MeV and above 1 GeV.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Cycles of phase evolution of solar activity and cosmic-ray variations are reconstructed by means of the delay component method, which allows us to study the temporal behaviour of time lag between solar activity and cosmic-ray cycle phases. It is shown that the period of the late 20th cycle was very unusual. We have found a delay in the phase of the solar activity cycle with respect to that of cosmic rays and discuss the heliospheric conditions responsible for this delay.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract In this paper, we are primarily concerned with the solar neutron emission during the 1990 May 24 flare, utilizing the counting rate of the Climax neutron monitor and the time profiles of hard X-rays and γ-rays obtained with the GRANAT satellite (Pelaezet al., 1992; Talonet al., 1993; Terekhovet al., 1993). We compare the derived neutron injection function with macroscopic parameters of the flare region as obtained from theHα and microwave observations made at the Big Bear Solar Observatory and the Owens Valley Radio Observatory, respectively. Our results are summarized as follows: (1) to explain the neutron monitor counting rate and 57.5–110 MeV and 2.2 MeV γ-ray time profiles, we consider a two-component neutron injection function,Q(E, t), with the form $$Q(E,t) = N_f {\text{ exp[}} - E/E_f - t/T_f ] + N_s {\text{ exp[}} - E/E_s - t/T_s ],$$ whereN f(s),E f(s), andT f(s) denote number, energy, and decay time of the fast (slow) injection component, respectively. By comparing the calculated neutron counting rate with the observations from the Climax neutron monitor we derive the best-fit parameters asT f ≈ 20 s,E f ≈ 310 MeV,T s ≈ 260 s,E s ≈ 80 MeV, andN f (E 〉 100 MeV)/N s (E 〉 100 MeV) ≈ 0.2. (2) From the Hα observations, we find a relatively small loop of length ≈ 2 × 104 km, which may be regarded as the source for the fast-decaying component of γ-rays (57.5–110 MeV) and for the fast component of neutron emission. From microwave visibility and the microwave total power spectrum we postulate the presence of a rather big loop (≈ 2 × 105 km), which we regard as being responsible for the slow-decaying component of the high-energy emission. We show how the neutron and γ-ray emission data can be explained in terms of the macroscopic parameters derived from the Hα and microwave observations. (3) The Hα observations also reveal the presence of a fast mode MHD shock (the Moreton wave) which precedes the microwave peak by 20–30 s and the peak of γ-ray intensity by 40–50 s. From this relative timing and the single-pulsed time profiles of both radiations, we can attribute the whole event as due to a prompt acceleration of both electrons and protons by the shock and subsequent deceleration of the trapped particles while they propagate inside the magnetic loops.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Data on X-,γ-ray, optical and radio emission from the 1991 June 15 solar flare are considered. We have calculated the spectrum of protons that producesγ-rays during the gradual phase of the flare. The primary proton spectrum can be described as a Bessel-function-type up to 0.8 GeV and a power law with the spectral index ≈3 from 0.8 up to 10 GeV or above. We have also analyzed data on energetic particles near the Earth. Their spectrum differed from that of primary protons producingγ-ray line emission. In the gradual phase of the flare additional pulses of energy release occurred and the time profiles of cm-radio emission andγ-rays in the 0.8–10 MeV energy band and above 50 MeV coincided. A continuous and simultaneous stochastic acceleration of the protons and relativistic electrons at the gradual phase of the flare is considered as a natural explanation of the data.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 431 (2004), S. 1084-1087 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Direct observations of sunspot numbers are available for the past four centuries, but longer time series are required, for example, for the identification of a possible solar influence on climate and for testing models of the solar dynamo. Here we report a reconstruction of the sunspot number ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 15 (1997), S. 375-386 
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The use of the World Neutron Monitor Network to detect high-energy solar neutrons is discussed in detail. It is shown that the existing network can be used for the routine detection of intense sporadic solar-neutron events whenever they occur. A technique is suggested involving the weighted summation of responses of separate monitors to solar neutrons. It is demonstrated that the use of this method improves the significance of solar-neutron event detection. Different results of the simulation of the neutron-monitor sensitivity to solar neutrons have been tested with respect to their application for practical use. It is shown that the total number of neutrons with energy above 300 MeV injected from the Sun during a solar flare can be estimated directly from the time-integrated neutronmonitor response to solar neutrons without any model assumptions. The estimation technique has been developed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We made a parameter fit to the Haleakala neutron monitor counting rate during the 1991 March 22 solar flare (Pyle and Simpson, 1991) using the time profiles of γ-rays at 0.42–80 MeV obtained with the GRANAT satellite (Vilmeret al., 1994) and the microwave data from Owens Valley Radio Observatory. We use a two-component neutron injection function to find that either an impulsive injection or the ‘impulsive-plus-prolonged’ neutron injection is possible. In both cases, the number of 〉 300 MeV neutrons emitted towards the Earth is estimated as ≈ 2 × 1027 sr−1, which is less than that of the 1990 May 24 flare by an order of magnitude. We tested if such a big difference in neutron number detected on the Earth can be accounted for solely by their different positions on the solar disk. For the estimation of the degree of anisotropy of high-energy secondary emission, we made use of macroscopic parameters of the flare active region, in particular, the vector magnetogram data from the Big Bear Solar Observatory. In our result, the anisotropy factor for the neutral emissions of the 1991 March 22 flare is only ≈ 1 – 10, which is rather small compared with previous theoretical predictions for a disk flare. Such a moderate anisotropy is due to the relatively large inclination angles of the magnetic fields at the footpoints of the flaring loop where accelerated particles are trapped. We thus concluded that the smaller number of neutrons of the 1991 March 22 flare would be not only due to its location on the disk, but also due to fewer protons accelerated during this event as compared with the 1990 May 24 limb event. For a more precise determination of the anisotropy factor in a flare, we need a detailed spectrum of electron bremsstrahlung in 0.1 – 10 MeV and the fluence of γ-ray emission from the π0-decay.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...