GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Key wordsNitrospira moscoviensis ; Nitrite-oxidizing system ; Membrane-associated enzyme ; Periplasmic space ; Monoclonal antibodies ; Post-embedding labeling ; Hexagonal pattern
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A membrane-associated nitrite-oxidizing system of Nitrospira moscoviensis was isolated from heat-treated membranes. The four major proteins of the enzyme fraction had apparent molecular masses of 130, 62, 46, and 29 kDa, respectively. The nitrite-oxidizing activity was dependent on the presence of molybdenum. In contrast to the nitrite oxidoreductase of Nitrobacter hamburgensis X14, the activity of the nitrite-oxidizing system of Ns. moscoviensis increased when solubilized by heat treatment. Electron microscopy of the purified enzyme revealed uniform particles with a size of approximately 7 × 9 nm. SDS-immunoblotting analysis of crude extracts showed that the monoclonal antibodies Hyb 153–3, which recognize the β-subunit of the nitrite oxidoreductase from Nitrobacter, reacted with a protein of 50 kDa in Ns. moscoviensis. This protein corresponded to the protein of 46 kDa of the purified enzyme and contained a b-type cytochrome. Using electron microscopic immunocytochemistry and the monoclonal antibodies Hyb 153–3, the nitrite-oxidizing system of Ns. moscoviensis was shown to be located in the periplasmic space. Here a periodic arrangement of membrane-associated particles was found on the outside of the cytoplasmic membrane in the form of a hexagonal pattern. It is supposed that these particles represent the nitrite-oxidizing system in Nitrospira.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  EPIC3Astrobiology: The Quest for the Conditions of Life, pp. 143-159, ISBN: 3-540-42101-7
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC3DFG Colloquium: Mars and the Terrestrial Planets, MünsterAugust 2003., 20
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: In marine recirculating aquaculture systems (RAS) ozone is often used in combination with biofiltration for the improvement of process water quality. Especially for disinfection purposes ozone residuals are required, that lead to a fast formation of secondary oxidants in seawater, summed up as ozone-produced oxidants (OPO). We studied the impact of OPO on nitrifying biofilter bacteria in a series of laboratory batch experiments by exposing (i) cell suspensions of the ammonia-oxidizing bacteria (AOB) Nitrosomonas marina strain 22 and the nitrite-oxidizing bacteria (NOB) Nitrospira strain Ecomares 2.1, (ii) a pure culture of the NOB Nitrospira strain immobilized on biocarriers, as well as (iii) a heterogeneous biofilm culture settled on biocarriers from a marine RAS for 1 h to different OPO concentrations up to 0.6 mg/l chlorine equivalent. Subsequent activity tests detected a negative linear correlation between OPO concentration and nitrifying activity of suspended pure cultures. Immobilization on biocarriers increased the tolerance of AOB and NOB dramatically, suggesting the biofilm matrix to be highly protective against OPO. Furthermore, we investigated the chronic effect of moderate ozonation at OPO concentrations of 0, 0.05, 0.10 and 0.15 mg/l chlorine equivalent on biofilter performance in a 21 d exposure experiment using 12 experimental RAS, stocked with tilapia (Oreochromis niloticus). Chronic exposure experiments could not reveal any harmful impact on biofilter performance for OPO concentrations up to 0.15 mg/l, even at continuous exposure. Surprisingly, nitrifying activity was enhanced at all OPO concentrations compared to the control without ozonation, suggesting moderate ozonation to promote biological nitrification. It can be concluded that rather health, welfare and performance of most cultivated fish species are the limiting factors for ozone dosage than nitrification performance of biofilters. The results may further have practical implications in relation to design and operational strategy of water treatment processes in RAS and might thus contribute to the optimization of an effective and safe treatment combination of biofiltration and ozonation
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-11-01
    Description: The genomes of many bacteria that participate in nitrogen cycling through the process of nitrification contain putative genes associated with acyl-homoserine lactone (AHL) quorum sensing (QS). AHL QS or bacterial cell-cell signaling is a method of bacterial communication and gene regulation and may be involved in nitrogen oxide fluxes or other important phenotypes in nitrifying bacteria. Here, we carried out a broad survey of AHL production in nitrifying bacteria in three steps. First, we analyzed the evolutionary history of AHL synthase and AHL receptor homologs in sequenced genomes and metagenomes of nitrifying bacteria to identify AHL synthase homologs in ammonia-oxidizing bacteria (AOB) of the genus Nitrosospira and nitrite-oxidizing bacteria (NOB) of the genera Nitrococcus , Nitrobacter , and Nitrospira . Next, we screened cultures of both AOB and NOB with uncharacterized AHL synthase genes and AHL synthase-negative nitrifiers by a bioassay. Our results suggest that an AHL synthase gene is required for, but does not guarantee, cell density-dependent AHL production under the conditions tested. Finally, we utilized mass spectrometry to identify the AHLs produced by the AOB Nitrosospira multiformis and Nitrosospira briensis and the NOB Nitrobacter vulgaris and Nitrospira moscoviensis as N -decanoyl- l -homoserine lactone (C 10 -HSL), N -3-hydroxy-tetradecanoyl- l -homoserine lactone (3-OH-C 14 -HSL), a monounsaturated AHL (C 10:1 -HSL), and N -octanoyl- l -homoserine lactone (C 8 -HSL), respectively. Our survey expands the list of AHL-producing nitrifiers to include a representative of Nitrospira lineage II and suggests that AHL production is widespread in nitrifying bacteria. IMPORTANCE Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite by nitrifying microorganisms, plays an important role in environmental nitrogen cycling from agricultural fertilization to wastewater treatment. The genomes of many nitrifying bacteria contain genes associated with bacterial cell-cell signaling or quorum sensing (QS). QS is a method of bacterial communication and gene regulation that is well studied in bacterial pathogens, but less is known about QS in environmental systems. Our previous work suggested that QS might be involved in the regulation of nitrogen oxide gas production during nitrite metabolism. This study characterized putative QS signals produced by different genera and species of nitrifiers. Our work lays the foundation for future experiments investigating communication between nitrifying bacteria, the purpose of QS in these microorganisms, and the manipulation of QS during nitrification.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-11-02
    Description: Nitrite-oxidizing bacteria (NOB) have conventionally been regarded as a highly specialized functional group responsible for the production of nitrate in the environment. However, recent culture-based studies suggest that they have the capacity to lead alternative lifestyles, but direct environmental evidence for the contribution of marine nitrite oxidizers to other processes has been lacking to date. We report on the alternative biogeochemical functions, worldwide distribution, and sometimes high abundance of the marine NOB Nitrococcus . These largely overlooked bacteria are capable of not only oxidizing nitrite but also reducing nitrate and producing nitrous oxide, an ozone-depleting agent and greenhouse gas. Furthermore, Nitrococcus can aerobically oxidize sulfide, thereby also engaging in the sulfur cycle. In the currently fast-changing global oceans, these findings highlight the potential functional switches these ubiquitous bacteria can perform in various biogeochemical cycles, each with distinct or even contrasting consequences.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-06
    Description: Nitrification has an immense impact on nitrogen cycling in natural ecosystems and in wastewater treatment plants. Mathematical models function as tools to capture the complexity of these biological systems, but kinetic parameters especially of nitrite-oxidizing bacteria (NOB) are lacking because of a limited number of pure cultures until recently. In this study, we compared the nitrite oxidation kinetics of six pure cultures and one enrichment culture representing three genera of NOB ( Nitrobacter , Nitrospira , Nitrotoga ). With half-saturation constants ( K m ) between 9 and 27 μM nitrite, Nitrospira bacteria are adapted to live under significant substrate limitation. Nitrobacter showed a wide range of lower substrate affinities, with K m values between 49 and 544 μM nitrite. However, the advantage of Nitrobacter emerged under excess nitrite supply, sustaining high maximum specific activities ( V max ) of 64 to 164 μmol nitrite/mg protein/h, contrary to the lower activities of Nitrospira of 18 to 48 μmol nitrite/mg protein/h. The V max (26 μmol nitrite/mg protein/h) and K m (58 μM nitrite) of " Candidatus Nitrotoga arctica" measured at a low temperature of 17°C suggest that Nitrotoga can advantageously compete with other NOB, especially in cold habitats. The kinetic parameters determined represent improved basis values for nitrifying models and will support predictions of community structure and nitrification rates in natural and engineered ecosystems.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-08
    Description: The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga , and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica . Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-09
    Description: Nitrospira are a diverse group of nitrite-oxidizing bacteria and among the environmentally most widespread nitrifiers. However, they remain scarcely studied and mostly uncultured. Based on genomic and experimental data from Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II, we identified ecophysiological traits that contribute to the ecological success of Nitrospira....
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...