GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 3205-3212 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Dielectric potting materials (encapsulants) are used to prevent air breakdown in high-voltage electrical devices. We report breakdown strengths in void-filled encapsulants, stressed with unipolar voltage pulses of the order of 10 μs duration. High strengths, on the order of 100 kV mm−1, are measured under these test conditions. The materials studied include low-density open celled gel-derived foams with cell sizes of 4 μm or less, closed celled CO2-blown polystyrene and urethane foams, and epoxies containing 48 vol % of hollow glass microballoon (GMB) fillers. These last specimens varied the void gas (N2 or SO2) and also the void diameters (tens to hundreds of μm). Our measurements are thought to be directly sensitive to the rate of field-induced ionization events in the void gas; however, the breakdown strengths of the materials tested appeared to vary in direct proportion with the conventional Paschen-law gas-discharge inception threshold, the electric stress at which gas-ionization avalanches become possible. The GMB-epoxy specimens displayed this type of dependence of breakdown strength on the void-gas density and void size, but the measurements were an order of magnitude above the conventional predictions. Small-celled foams also showed increased breakdown strengths with decreased cell size, although their irregular void geometry prevented a direct comparison with the more uniformly structured microballoon-filled encapsulants. The experimental observations are consistent with a breakdown mechanism in which the discharge of a few voids can launch a full breakdown in the composite material. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...