GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schlüter, Lothar; Lohbeck, Kai T; Gröger, Joachim P; Riebesell, Ulf; Reusch, Thorsten B H (2016): Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. Science Advances, 2(7), e1501660-e1501660, https://doi.org/10.1126/sciadv.1501660
    Publication Date: 2023-10-23
    Description: Recent evolution experiments have revealed that marine phytoplankton may adapt to global change, for example to ocean warming or acidification. Long-term adaptation to novel environments is a dynamic process and phenotypic change can take place thousands of generations after exposure to novel conditions. Using the longest evolution experiment performed in any marine species to date (4 yrs, = 2100 generations), we show that in the coccolithophore Emiliania huxleyi, long-term adaptation to ocean acidification is complex and initial phenotypic responses may revert for important traits. While fitness increased continuously, calcification was restored within the first 500 generations but later reduced in response to selection, enhancing physiological declines of calcification in response to ocean acidification. Interestingly, calcification was not constitutively reduced but revealed rates similar to control treatments when transferred back to present-day CO2 conditions. Growth rate increased with time in controls and adaptation treatments, although the effect size of adaptation assessed through reciprocal assay experiments varied. Several trait changes were associated with selection for higher cell division rates under laboratory conditions, such as reduced cell size and lower particulate organic carbon content per cell. Our results show that phytoplankton may evolve phenotypic plasticity that can affect biogeochemically important traits, such as calcification, in an unforeseen way under future ocean conditions.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schlüter, Lothar; Lohbeck, Kai T; Gutowska, Magdalena A; Gröger, Joachim P; Riebesell, Ulf; Reusch, Thorsten B H (2014): Adaptation of a globally important coccolithophore to ocean warming and acidification. Nature Climate Change, https://doi.org/10.1038/NCLIMATE2379
    Publication Date: 2023-10-23
    Description: Although oceanwarming and acidification are recognized as two major anthropogenic perturbations of today's oceanswe know very little about how marine phytoplankton may respond via evolutionary change.We tested for adaptation to ocean warming in combination with ocean acidification in the globally important phytoplankton species Emiliania huxleyi. Temperature adaptation occurred independently of ocean acidifcation levels. Exponential growth rates were were up to 16% higher in populations adapted for one year to warming when assayed at their upper thermal tolerance limit. Particulate inorganic (PIC) and organic (POC) carbon production was restored to values under present-day ocean conditions, owing to adaptive evolution, and were 101% and 55% higher under combined warming and acidification, respectively, than in non-adapted controls. Cells also evolved to a smaller size while they recovered their initial PIC:POC ratio even under elevated CO2. The observed changes in coccolithophore growth, calcite and biomass production, cell size and elemental composition demonstrate the importance of evolutionary processes for phytoplankton performance in a future ocean. At the end of a 1-yr temperature selection phase, we conducted a reciprocal assay experiment in which temperature-adapted asexual populations were compared to the respective non-adapted control populations under high temperature, and vice versa (1. Assay Data, Dataset #835336). Mean exponential growth rates m in treatments subjected to high temperature increased rapidly under all high temperature-CO2 treatment combinations during the temperature selection phase (2. time series, Dataset #835339).
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Dörner, Isabel; Hauss, Helena; Aberle, Nicole; Lohbeck, Kai T; Spisla, Carsten; Riebesell, Ulf; Ismar, Stefanie M (2020): Ocean acidification impacts on biomass and fatty acid composition of a post-bloom marine plankton community. Marine Ecology Progress Series, p49-64, https://doi.org/10.3354/meps13390
    Publication Date: 2023-10-23
    Description: Quantifying effects of Ocean Acidification (OA) on marine primary and secondary producers is of acute interest, as they could translate up to higher trophic levels and ultimately may alter ecosystem services including fishery yields. A mesocosm approach was used to investigate the effects of OA on a natural plankton community in coastal waters off Norway by manipulating CO2 partial pressure (pCO2). Eight enclosures were deployed in the Raunefjord near Bergen. Treatment levels were ambient and elevated pCO2 of ~ 2000 µatm each in four replicate enclosures. The experiment lasted for 53 days in early summer of 2015. To assess impacts of OA on the plankton community, we measured phytoplankton and protozooplankton biomass and total seston fatty acid (FA) content. In both the control and the elevated pCO2 treatment, the plankton community was dominated by the dinoflagellate Ceratium longipes. In the elevated pCO2 treatment, however, this species as well as other dinoflagellates were strongly negatively impacted: At the end of the experiment, total dinoflagellate biomass was fourfold higher in the control group than under elevated pCO2 treatment. In a size comparison of C. longipes, individuals in the high pCO2 treatment were significantly larger. Fatty acid analysis revealed a decreased ratio of polyunsaturated fatty acids (PUFA) to saturated fatty acids (SFA) at elevated pCO2. Further, docosahexaenoic acid (DHA, C 22:6n3c), essential for development and reproduction of copepods and higher trophic levels, was lower in the high pCO2 treatment. Both in quality and quantity of their food, higher trophic levels thus experienced worse conditions in a community exposed to elevated pCO2, with potentially severe consequences for higher trophic levels.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-06
    Description: This dataset is from an experiment with large-volume in situ mesocosms (~55-60 m3 and 21 m depth) in Raunefjord (Bergen), Norway in 2015. In this pelagic in situ mesocosm experiment, we assessed how ocean acidification (particularly episodic extreme events) affect natural plankton communities. A particular focus was the response of the appendicularian Oikopleura dioica, and its influence on vertical carbon fluxes. Therefore, we sampled ecological and biogeochemical key parameters for 49 days in regular intervals.
    Keywords: Appendicularia; Area/locality; Biological pump; Carbon, organic, particulate, flux; Carbon, organic, particulate, suspended; carbon export; Counting; DATE/TIME; Day of experiment; Elemental analyser; Event label; Field experiment; Flow cytometry Accuri C6; KOSMOS_2015; KOSMOS_2015_Mesocosm-M1; KOSMOS_2015_Mesocosm-M2; KOSMOS_2015_Mesocosm-M3; KOSMOS_2015_Mesocosm-M4; KOSMOS_2015_Mesocosm-M5; KOSMOS_2015_Mesocosm-M6; KOSMOS_2015_Mesocosm-M7; KOSMOS_2015_Mesocosm-M8; KOSMOS Bergen; larvacea; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Microphytoplankton, biomass as carbon; Nanophytoplankton, biomass as carbon; Ocean acidification; Oikopleura dioica; Oikopleura dioica, length; Picophytoplankton, biomass as carbon; POC flux; Treatment: partial pressure of carbon dioxide; Type of study; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 2205 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zhang, Yong; Klapper, Regina; Lohbeck, Kai T; Bach, Lennart Thomas; Schulz, Kai Georg; Reusch, Thorsten B H; Riebesell, Ulf (2014): Between- and within-population variations in thermal reaction norms of the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 59(5), 1570-1580, https://doi.org/10.4319/lo.2014.59.5.1570
    Publication Date: 2024-03-06
    Description: Thermal reaction norms for growth rates of six Emiliania huxleyi isolates originating from the central Atlantic (Azores, Portugal) and five isolates from the coastal North Atlantic (Bergen, Norway) were assessed. We used the template mode of variation model to decompose variations in growth rates into modes of biological interest: vertical shift, horizontal shift, and generalist-specialist variation. In line with the actual habitat conditions, isolates from Bergen (Bergen population) grew well at lower temperatures, and isolates from the Azores (Azores population) performed better at higher temperatures. The optimum growth temperature of the Azores population was significantly higher than that of the Bergen population. Neutral genetic differentiation was found between populations by microsatellite analysis. These findings indicate that E. huxleyi populations are adapted to local temperature regimes. Next to between-population variation, we also found variation within populations. Genotype-by-environment interactions resulted in the most pronounced phenotypic differences when isolates were exposed to temperatures outside the range they naturally encounter. Variation in thermal reaction norms between and within populations emphasizes the importance of using more than one isolate when studying the consequences of global change on marine phytoplankton. Phenotypic plasticity and standing genetic variation will be important in determining the potential of natural E. huxleyi populations to cope with global climate change.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 267.5 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-22
    Description: The oceans' uptake of anthropogenic carbon dioxide (CO2) decreases seawater pH and alters the inorganic carbon speciation – summarized in the term ocean acidification (OA). Already today, coastal regions experience episodic pH events during which surface layer pH drops below values projected for the surface ocean at the end of the century. Future OA is expected to further enhance the intensity of these coastal extreme pH events. To evaluate the influence of such episodic OA events in coastal regions, we deployed eight pelagic mesocosms for 53 days in Raunefjord, Norway, and enclosed 56–61 m**3 of local seawater containing a natural plankton community under nutrient limited post-bloom conditions. Four mesocosms were enriched with CO2 to simulate extreme pCO2 levels of 1978-2069 μatm while the other four served as untreated controls. Here, we present results from multivariate analyses on OA-induced changes in the phyto-, micro-, and mesozooplankton community structure. Pronounced differences in the plankton community emerged early in the experiment, and were amplified by enhanced top-down control throughout the study period. The plankton groups responding most profoundly to high CO2 conditions were cyanobacteria (negative), chlorophyceae (negative), auto- and heterotrophic microzooplankton (negative), and a variety of mesozooplanktonic taxa, including copepoda (mixed), appendicularia (positive), hydrozoa (positive), fish larvae (positive), and gastropoda (negative). The restructuring of the community coincided with significant changes in the concentration and elemental stoichiometry of particulate organic matter. Results imply that extreme CO2 events can lead to a substantial reorganization of the planktonic food web, affecting multiple trophic levels from phytoplankton to primary and secondary consumers.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Ammonium; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Biogenic silica; Biomass/Abundance/Elemental composition; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carbon, organic, particulate/Phosphorus, particulate ratio; Carbon, total, particulate; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyceae indeterminata, biomass as carbon; Chlorophyll a; Chlorophyll a, standard deviation; Chrysophyceae indeterminata, biomass as carbon; Coast and continental shelf; Community composition and diversity; Cryptophyceae indeterminata, biomass as carbon; Cyanophyceae, biomass as carbon; DATE/TIME; Day of experiment; Diatoms indeterminata, biomass as carbon; Dinophyceae indeterminata, biomass as carbon; Entire community; Event label; Field experiment; Fjord; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; KOSMOS_2015; KOSMOS_2015_Mesocosm-M1; KOSMOS_2015_Mesocosm-M2; KOSMOS_2015_Mesocosm-M3; KOSMOS_2015_Mesocosm-M4; KOSMOS_2015_Mesocosm-M5; KOSMOS_2015_Mesocosm-M6; KOSMOS_2015_Mesocosm-M7; KOSMOS_2015_Mesocosm-M8; KOSMOS_2015_Mesocosm-M9; KOSMOS Bergen; MESO; Mesocosm experiment; Mesocosm label; Mesocosm or benthocosm; Nitrate; Nitrate and Nitrite; Nitrite; Nitrogen, organic, particulate; Nitrogen, organic, particulate/Phosphorus, organic, particulate ratio; Nitrogen, total, particulate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; Pelagos; pH; pH, standard deviation; Phosphate; Phosphate, total, particulate; Potentiometric titration; Prasinophyceae indeterminata, biomass as carbon; Primary production/Photosynthesis; Prymnesiophyceae indeterminata, biomass as carbon; Ratio; Salinity; Salinity, standard deviation; Silicate; Temperate; Temperature, water; Temperature, water, standard deviation; Type
    Type: Dataset
    Format: text/tab-separated-values, 18566 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-15
    Description: We conducted an experiment with large volume in situ mesocosms (~55–60 m3 and 21 m depth) in Raunefjord (Bergen), Norway in 2015 to investigate how ocean acidification (OA) extreme events affect food web structure and carbon export in a natural plankton community, particularly focusing on the keystone species Oikopleura dioica, a globally abundant appendicularian.
    Keywords: Abundance per volume; Alkalinity, total; Animalia; Aragonite saturation state; Area/locality; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, particulate, flux; Carbon, organic, particulate, suspended; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Community composition and diversity; Counting; DATE/TIME; Day of experiment; Elemental analyser; Entire community; Event label; Field experiment; Flow cytometry Accuri C6; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; KOSMOS_2015; KOSMOS_2015_Mesocosm-M1; KOSMOS_2015_Mesocosm-M2; KOSMOS_2015_Mesocosm-M3; KOSMOS_2015_Mesocosm-M4; KOSMOS_2015_Mesocosm-M5; KOSMOS_2015_Mesocosm-M6; KOSMOS_2015_Mesocosm-M7; KOSMOS_2015_Mesocosm-M8; KOSMOS Bergen; Length; MESO; Mesocosm experiment; Mesocosm label; Mesocosm or benthocosm; Microphytoplankton, biomass as carbon; Nanophytoplankton, biomass as carbon; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Oikopleura dioica; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Picophytoplankton, biomass as carbon; Salinity; Silicate; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature, water; Treatment: partial pressure of carbon dioxide; Type of study; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 5405 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lohbeck, Kai T; Riebesell, Ulf; Collins, Sinéad; Reusch, Thorsten B H (2013): Functional genetic divergence in high CO2 adapted Emiliania Huxleyi populations. Evolution, 67(7), 1892-1900, https://doi.org/10.1111/j.1558-5646.2012.01812.x
    Publication Date: 2024-03-15
    Description: Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short-term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well-established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2-adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment "high light" did not reveal such genetic divergence whereas growth in a low-salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Emiliania huxleyi; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Generation; Growth/Morphology; Growth rate; Haptophyta; Laboratory experiment; Laboratory strains; Light; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phytoplankton; Population; Potentiometric titration; Replicates; Salinity; Single species; Species; Temperature, water; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 4800 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-15
    Description: A mesocosm approach was used to investigate the effects of ocean acidification (OA) on a natural plankton community in coastal waters off Norway by manipulating CO2 partial pressure ( pCO2). Eight enclosures were deployed in the Raunefjord near Bergen. Treatment levels were ambient (320 µatm) and elevated pCO2 (~2000 µatm), each in 4 replicate enclosures. The experiment lasted for 53 d in May-June 2015. To assess impacts of OA on the plankton community, phytoplankton and protozooplankton biomass and total seston fatty acid content were analyzed. In both treatments, the plankton community was dominated by the dinoflagellate Ceratium longipes. In the elevated pCO2 treatment, however, biomass of this species as well as that of other dinoflagellates was strongly negatively affected. At the end of the experiment, total dinoflagellate biomass was 4-fold higher in the control group than under elevated pCO2 conditions. In a size comparison of C. longipes, cell size in the high pCO2 treatment was significantly larger. The ratio of polyunsaturated fatty acids to saturated fatty acids of seston decreased at high pCO2. In particular, the concentration of docosahexaenoic acid (C 22:6n3c), essential for development and reproduction of metazoans, was less than half at high pCO2 compared to ambient pCO2. Thus, elevated pCO2 led to a deterioration in the quality and quantity of food in a natural plankton community, with potential consequences for the transfer of matter and energy to higher trophic levels.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; DATE/TIME; Date/time end; Day of experiment; Entire community; Event label; Fatty acids; Fatty acids of water; Field experiment; Fjord; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); KOSMOS_2015; KOSMOS_2015_Mesocosm-M1; KOSMOS_2015_Mesocosm-M2; KOSMOS_2015_Mesocosm-M3; KOSMOS_2015_Mesocosm-M4; KOSMOS_2015_Mesocosm-M5; KOSMOS_2015_Mesocosm-M6; KOSMOS_2015_Mesocosm-M7; KOSMOS_2015_Mesocosm-M8; KOSMOS_2015_Mesocosm-M9; KOSMOS Bergen; MESO; Mesocosm experiment; Mesocosm or benthocosm; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phase; Phosphate; Phytoplankton, biomass; Salinity; Sample code/label; Silicate; Temperate; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 5976 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zhang, Yong; Bach, Lennart Thomas; Lohbeck, Kai T; Schulz, Kai Georg; Listmann, Luisa; Klapper, Regina; Riebesell, Ulf (2018): Population-specific responses in physiological rates of Emiliania huxleyi to a broad CO2 range. Biogeosciences, 15(12), 3691-3701, https://doi.org/10.5194/bg-15-3691-2018
    Publication Date: 2024-04-20
    Description: Although coccolithophore physiological responses to CO2-induced changes in seawater carbonate chemistry have been widely studied in the past, there is limited knowledge on the variability of physiological responses between populations from different areas. In the present study, we investigated the specific responses of growth, particulate organic (POC) and inorganic carbon (PIC) production rates of three populations of the coccolithophore Emiliania huxleyi from three regions in the North Atlantic Ocean (Azores: six strains, Canary Islands: five strains, and Norwegian coast near Bergen: six strains) to a CO2 partial pressure (pCO2) range from 120 to 2630µatm. Physiological rates of each population and individual strain increased with rising pCO2 levels, reached a maximum and declined thereafter. Optimal pCO2 for growth, POC production rates, and tolerance to low pH (i.e., high proton concentration) was significantly higher in an E. huxleyi population isolated from the Norwegian coast than in those isolated near the Azores and Canary Islands. This may be due to the large environmental variability including large pCO2 and pH fluctuations in coastal waters off Bergen compared to the rather stable oceanic conditions at the other two sites. Maximum growth and POC production rates of the Azores and Bergen populations were similar and significantly higher than that of the Canary Islands population. This pattern could be driven by temperature–CO2 interactions where the chosen incubation temperature (16°C) was slightly below what strains isolated near the Canary Islands normally experience. Our results indicate adaptation of E. huxleyi to their local environmental conditions and the existence of distinct E. huxleyi populations. Within each population, different growth, POC, and PIC production rates at different pCO2 levels indicated strain-specific phenotypic plasticity. Accounting for this variability is important to understand how or whether E. huxleyi might adapt to rising CO2 levels.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...