GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract.  A tree-ring chronology network recently developed from the subantarctic forests provides an opportunity to study long-term climatic variability at higher latitudes in the Southern Hemisphere. Fifty long (1911–1985), homogeneous records of monthly mean sea-level pressure (MSLP) from the southern latitudes (15–65 °S) were intercorrelated on a seasonal basis to establish the most consistent, long-term Trans-Polar teleconnections during this century. Variations in summer MSLP between the South America-Antarctic Peninsula and the New Zealand sectors of the Southern Ocean are significantly correlated in a negative sense (r=−0.53, P〈0.001). Climatically sensitive chronologies from Tierra del Fuego (54–55°) and New Zealand (39–47°) were used to develop verifiable reconstructions of summer (November to February) MSLP for both sectors of the Southern Ocean. These reconstructions, which explain between 37 and 43% of the instrumentally recorded pressure variance, indicate that inverse trends in MSLP from diametrically opposite sides of Antarctica have prevailed during the past two centuries. However, the strength of this relationship varies over time. Differences in normalized MSLP between the New Zealand and the South America-Antarctic Peninsula sectors were used to develop a Summer Trans-Polar Index (STPI), which represents an index of sea-level pressure wavenumber one in the Southern Hemisphere higher latitudes. Tree-ring based reconstructions of STPI show significant differences in large-scale atmospheric circulation between the nineteenth and the twentieth centuries. Predominantly-negative STPI values during the nineteenth century are consistent with more cyclonic activity and lower summer temperatures in the New Zealand sector during the 1800s. In contrast, cyclonic activity appears to have been stronger in the mid-twentieth than previously for the South American sector of the Southern Ocean. Recent variations in MSLP in both regions are seen as part of the long-term dynamics of the atmosphere connecting opposite sides of Antarctica. A detailed analysis of the MSLP and STPI reconstructions in the time and frequency domains indicates that much of the interannual variability is principally confined to frequency bands with a period around 3.3–3.6 y. Cross spectral analysis between the STPI reconstruction and the Southern Oscillation Index suggests that teleconnections between the tropical ocean and extra-tropical MSLP variations may be influencing climate fluctuations at southern latitudes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Eight tree-ring chronologies from coastal sites along the Gulf of Alaska (GOA) are used to develop a 227-year (1762–1988) reconstruction of spring/summer (March–September) coastal land temperatures for the region. This reconstruction explains 35% of the variance in the instrumental temperature data. The tree-ring records and reconstruction reflect the documented 1976 transition from cold to warm conditions in the North Pacific and are consistent with regional temperature compilations. Three of the eight ring-width series, from elevational timberline sites where trees are particularly stressed by temperature, extend back to A.D. 1600 and are used to identify additional occurrences of such transitions. The first principal component (PC) scores of these three longer records are positively correlated with spring (March–May) land and sea surface temperatures for the GOA region and are used to reconstruct land surface temperatures. Decadal-scale fluctuations in the reconstructions show agreement with decade-long changes in the intensity of the Aleutian Low pressure cell over the past century, suggesting that the tree-ring data may provide an index of past circulation changes for the northeast Pacific. Blackman-Tukey spectral analyses of both reconstructions indicate significant power at 7–11 years, with additional peaks at 3 years for the spring/summer reconstruction and 19 years for the longer spring temperature series. The modes of variation at about 3 and 7 years may correspond to those associated with the El Niño-Southern Oscillation bandwidth, whereas the 19-year term may relate to a proposed 20-year cycle of North Pacific circulation. The spring temperature series shows generally increased growth over the past century, coinciding with warmer spring temperatures in south coastal Alaska over this interval. Comparison with the entire spring series suggests that the recent warming exceeds temperature levels of prior centuries, extending back to A.D. 1600.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Quaternary Science Reviews 121 (2015): 89-97, doi:10.1016/j.quascirev.2015.05.020.
    Description: Warming over Mongolia and adjacent Central Asia has been unusually rapid over the past few decades, particularly in the summer, with surface temperature anomalies higher than for much of the globe. With few temperature station records available in this remote region prior to the 1950s, paleoclimatic data must be used to understand annual-to-centennial scale climate variability, to local response to large-scale forcing mechanisms, and the significance of major features of the past millennium such as the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA) both of which can vary globally. Here we use an extensive collection of living and subfossil wood samples from temperature-sensitive trees to produce a millennial-length, validated reconstruction of summer temperatures for Mongolia and Central Asia from 931 to 2005 CE. This tree-ring reconstruction shows general agreement with the MCA (warming) and LIA (cooling) trends, a significant volcanic signature, and warming in the 20th and 21st Century. Recent warming (2000-2005) exceeds that from any other time and is concurrent with, and likely exacerbated, the impact of extreme drought (1999-2002) that resulted in massive livestock loss across Mongolia.
    Description: This research was supported by the National Science Foundation under grants AGS-PRF #1137729, ATM0117442, and AGS0402474.
    Keywords: Mongolia ; Temperature ; Tree-ring ; Dendrochronology ; Reconstruction ; Global warming
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...