ISSN:
1572-8773
Keywords:
Ferritin
;
Chromatography
;
Fe/P ratio
;
Electron probe microanalysis
;
Electron spectroscopy
Source:
Springer Online Journal Archives 1860-2000
Topics:
Biology
,
Chemistry and Pharmacology
Notes:
Summary Cytosolic and lysosomal ferritin and haemosiderin were isolated from rat livers which had been iron-loaded by four intraperitoneal injections of iron-dextran. The cytosolic and lysosomal ferritins, prepared in a phosphate-free medium, were subjected to gel-filtration chromatography on Sepharose 613, yielding four fractions: a cytosolic monomeric (CMF) and void-volume ferritin fraction (CVVF), and a lysosomal monomeric (LMF) and void-volume ferritin fraction (LVVF). Of each fraction the following aspects were examined: (a) immunoreactivity against specific antiserum; (b) the Fe/P mass ratio and the effect of dialysis on this ratio using electron probe micro-analysis (EPMA); (c) morphology and Fespecific imaging using electron spectroscopic imaging (ESI) and electron energy loss spectroscopy (EELS). For haemosiderin one aspect, the Fe/P ratio, was determined before and after extensive purification. The following results were obtained (a) All ferritin fractions reacted with anti- (rat liver ferritin). (b) The Fe/P ratios as determined in CMF in an haemosiderin were not affected by dialysis or extensive purification, respectively. The Fe/P ratio in CWF was affected by dialysis. In the lysosomal fractions, only a trace of phosphorus (LVVF) or no phosphorus (LMF) was detected. (c) Morphologically, CMF and CVVF were found to be rather homogeneous; the iron core diameters of both fractions were in the known size range. LMF and LVVF were of rather heterogeneous composition; the core diameters of these fractions were different. In conclusion: the phosphorus in ferritin and haemosiderin is firmly bound; Haemosiderin, when derived from ferritin, has to take up phosphorus in the lysosomes.
Type of Medium:
Electronic Resource
URL:
http://dx.doi.org/10.1007/BF01129210
Permalink