GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Publisher
  • 1
    ISSN: 1432-1939
    Keywords: Plant allometry ; Photosynthetic metabolism ; Photosynthetic structures ; Thickness ; Chlorophyll a concentration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We tested the existence of general patterns in the photosynthetic metabolism of oxygen-evolving organisms, based on a compilation of data for 315 species ranging from cyanobacteria to tree leaves. We used thickness and chlorophyll a concentration of the photosynthetic structure (cell, thallus, leaf) to scale differences in photosynthetic metabolism among plants, because of the demonstrated importance of these plant traits in regulating light absorption properties and photosynthetic rates of particular plant groups. We examined only the properties of the photosynthetic structure because this is the plant unit responsible for the photosynthetic process and thus is closely related to plant productivity, whereas there is a lack of general quantitative descriptors of the whole organism useful for such broad-scale comparisons, and few studies report net photosynthetic rates of whole organisms, including respiration rates of all non-photosynthetic structures. The results demonstrated that descriptors of plant metabolism such as maximum net photosynthesis, initial slope of the photosynthesis-irradiance (PI) curve and dark respiration display strong positive interrelationships. The metabolic rates declined with increasing thickness of the photosynthetic structures and more steeply for photosynthesis than respiration. Photosynthetic rates also changed with increment of volume of the photosynthetic structure resembling patterns that have been previously described for animal metabolism related to body weight. The strong relationship of metabolic rate and chlorophyll a concentration to the thickness of photosynthetic tissue reflects broad-scale patterns and not the adaptive response of individual or closely-related species of similar tissue thickness to varying environmental conditions. Thickness of the photosynthetic structures, therefore, plays an important role in the environmental control of plant performance and, consequently, it might have been an important driver of plant evolution, setting thresholds to the metabolism and productivity of phototrophic organisms.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 98 (1994), S. 121-129 
    ISSN: 1432-1939
    Keywords: Marine macrophytes ; Tissue thickness ; Light absorption ; Chlorophyll a
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tissues of 338 marine macrophytes comprising 103 species, collected from the Atlantic, Mediterranean, South China, and Caribbean Seas, and encompassing a broad range in thallus form and pigmentation, were examined to quantify the importance of phylogenetic differences, spectral variability, and plant form and pigment content to account for differences in the absorption of light by marine macrophytes. Phylogenetic differences accounted for 2.5% of the variance in absorption observed, non-phylogenetic spectral differences being much larger (26%). Differences among individual specimens were much larger (72%), absorption at 675 nm increasing non-linearly as chlorophyll a density1/2, indicating that light absorption increases with increasing chlorophyll a density following a law of diminishing returns, as predicted by theory. The energy return per unit tissue produced (i.e. light absorption per unit plant weight) increased linearly with increasing chlorophyll a concentration. However, the light absorbed per unit weight decreased, for a given chlorophyll a concentration, as plant thickness increased. This indicates that while increasing thickness may increase chlorphyll a density and, hence, the light absorbed by marine macrophyte thalli, this strategy represents a burden limiting potential carbon turnover and plant growth. These results indicate that the diverse repertoire of light absorption by marine macrophytes can be adequately modeled as a continuum, dependent on plant thickness and pigment content, independent of phylogenetic differences.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Chollett, Iliana; Enríquez, Susana; Mumby, Peter John: Redefining thermal regimes to design reserves for coral reefs in the face of climate change. PLoS ONE, https://doi.org/10.1371/journal.pone.0110634
    Publication Date: 2023-01-13
    Description: Reef managers cannot fight global warming through mitigation at local scale, but they can use information on thermal patterns to plan for reserve networks that maximize the probability of persistence of their reef system. Here we assess previous methods for the design of reserves for climate change and present a new approach to prioritize areas for conservation that leverages the most desirable properties of previous approaches. The new method moves the science of reserve design for climate change a step forwards by: (1) recognizing the role of seasonal acclimation in increasing the limits of environmental tolerance of corals and ameliorating the bleaching response; (2) including information from several bleaching events, which frequency is likely to increase in the future; (3) assessing relevant variability at country scales, where most management plans are carried out. We demonstrate the method in Honduras, where a reassessment of the marine spatial plan is in progress.
    Keywords: Caribbean; File content; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Meyer, Friedrich Wilhelm; Schubert, Nadine; Diele, Karen; Teichberg, Mirta; Wild, Christian; Enríquez, Susana (2016): Effect of inorganic and organic carbon enrichments (DIC and DOC) on the photosynthesis and calcification rates of two calcifying green algae from a Caribbean reef lagoon. PLoS ONE, 11(8), e0160268, https://doi.org/10.1371/journal.pone.0160268
    Publication Date: 2024-03-15
    Description: Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 µatm) and DOC (added as 833 µmol/L of glucose) on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected under future OA scenarios, with important consequences for beach erosion and coastal sediment dynamics.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Biological oxygen demand; Biological oxygen demand, standard deviation; Calcification/Dissolution; Calcification rate, standard deviation; Calcification rate, standard error; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Chlorophyta; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Date; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross photosynthesis rate, oxygen; Gross photosynthesis rate, oxygen, standard error; Gross photosynthesis rate, standard deviation; Halimeda incrassata; Laboratory experiment; Macroalgae; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard error; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Plantae; Primary production/Photosynthesis; Puerto_Morelos__OA; Registration number of species; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, standard deviation; Respiration rate, oxygen, standard error; Salinity; Salinity, standard deviation; Single species; Species; Temperature, standard deviation; Temperature, water; Time in days; Treatment; Tropical; Type; Udotea flabellum; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 3488 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Vásquez-Elizondo, Román Manuel; Enríquez, Susana (2016): Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Scientific Reports, 6, 19030, https://doi.org/10.1038/srep19030
    Publication Date: 2024-03-15
    Description: In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Amphiroa tribulus; Antennae pigment; Antennae pigment, standard error; Aragonite saturation state; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcification rate, standard error; Calcification rate of calcium carbonate; Calcite saturation state; Calcite saturation state, standard error; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Chlorophyll a, standard error; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross photosynthesis/respiration ratio; Gross photosynthesis/respiration ratio, standard error; Gross photosynthesis rate, oxygen; Gross photosynthesis rate, oxygen, standard error; Irradiance; Laboratory experiment; Lithothamnion sp.; Macroalgae; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard error; Neogoniolithon sp.; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Plantae; Primary production/Photosynthesis; Puerto_Morelos; Registration number of species; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, standard error; Rhodophyta; Salinity; Salinity, standard error; Single species; Species; Temperature; Temperature, water; Temperature, water, standard error; Time in days; Treatment; Tropical; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 5675 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...