GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Computer simulation. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (264 pages)
    Edition: 1st ed.
    ISBN: 9783319323428
    Series Statement: Springer Theses Series
    DDC: 333.91
    Language: English
    Note: Intro -- Parts of this thesis have been published in the following journal articles: -- Supervisor's Foreword -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 Objective, Task, and Significance -- 1.2 Current Status of Research and Technology in Related Fields -- 1.2.1 Current Status of Research on the Technology of Comprehensive Utilization of Water Resources -- 1.2.1.1 Current Status of Research Abroad -- 1.2.1.2 Current Status of Research in China -- 1.2.2 Current Status of the Theory and Technology of Water Resources Assessment -- 1.2.2.1 Assessment Methods of Water Resources -- 1.2.2.2 Review of Water Resources Assessment Method -- 1.2.3 Current Status of Research on Mine Seepage Theory and Numerical Simulation -- 1.2.3.1 Simulation of Groundwater Flow -- 1.2.3.2 Research on Special Variability of Hydrological Hydraulic Parameters -- 1.2.4 Current Status of Research on the Theory and Technology of Rational Allocation of Water Resources -- 1.2.4.1 Basic Concept -- 1.2.4.2 The Scientific Basis of the Rational Allocation Water Resources -- 1.2.4.3 Relation Between Rational Allocation and Supply-Demand Balance of Water Resources -- 1.2.4.4 The Major Tasks of the Rational Allocation of Water Resources -- 1.2.4.5 Principles and Objectives of Water Resources Allocation -- 1.2.4.6 Model for the Rational Allocation of Water Resources -- 1.2.5 Current Status of the Research on Water Resources Protection in Mining Areas -- 1.2.6 Application of New Technology in the Study of Hydrology and Water Resources -- 1.2.6.1 Comprehensive Application of "3S" System -- 1.2.6.2 Application of Computer Technology -- 1.2.6.3 Application of Geostatistics -- 1.2.6.4 Application of Multivariate Statistical Analysis -- 1.2.6.5 Application of Hydrochemistry and Environmental Isotope Technique -- 1.3 General Thinking, Content, and Technical Route of the Study. , 1.3.1 General Thinking -- 1.3.2 Major Content -- 1.3.3 Technical Route -- References -- 2 Analysis of Supply and Demand of Water Resources in the Study Area -- 2.1 Assessment of Surface Water Resources -- 2.1.1 Surface Water Bodies in the Study Area -- 2.1.2 Runoff Volume of Ulan Mulun River -- 2.1.3 Resources of Surface Water Bodies -- 2.1.4 Total Surface Water Resources -- 2.2 Assessment of Groundwater Resources -- 2.2.1 Influence of Different Precipitation on the Recharge of Groundwater Resources -- 2.2.1.1 Statistical Analysis of Meteorological Data in the Study Area -- 2.2.1.2 Numerical Model of Water Content Migration in Aeration Zone in the Study Area and Determination of Rainfall Infiltration Coefficient -- 2.2.2 Assessment of Regional Groundwater Resources -- 2.2.2.1 Scope of Balance Area -- 2.2.2.2 Selection of Balance Period -- 2.2.2.3 Calculation of Balance Terms -- 2.2.2.4 Balance Analysis and Assessment of Groundwater Resources -- 2.3 Total Water Resources -- 2.4 Current Status of Water Resources Development and Utilization -- 2.4.1 Current Status of Water Supply Engineering -- 2.4.1.1 Tap Water Supply Engineering -- 2.4.1.2 Reused Water Engineering -- 2.4.2 Current Status of Water Supply -- 2.4.3 Current Status of Water Consumption -- 2.4.4 Analysis of the Current Status of Supply-Demand Balance of Water Resources -- 2.5 Prediction of Future Water Demand -- 2.5.1 Water Demand Prediction Based on GM (1, 1) Model -- 2.5.1.1 Basis of Prediction -- 2.5.1.2 Gray System Theory -- 2.5.2 Prediction of Water Demand -- 2.5.3 Planning of Water Supply Engineering -- 2.5.4 Analysis of Future Water Supply and Demand Balance -- 2.5.4.1 Analysis on Future Water Supply and Demand Balance -- 2.5.4.2 Analysis on Industrial Reused Water Supply and Demand Balance -- 2.6 Prediction of Mine Inflow. , 2.6.1 Current Status of Mine Inflow in Different Mines of the Study Area -- 2.6.2 Current Status of Water Filling in Gob of Different Mines in the Study Area -- 2.6.3 Basis of Prediction -- 2.6.4 Prediction of Mine Water Inflow -- 2.7 Summary -- References -- 3 Groundwater System in the Study Area -- 3.1 Generalities of Groundwater System -- 3.1.1 Concept of Groundwater System -- 3.1.2 Characteristics of Groundwater System -- 3.1.2.1 Hierarchy of Groundwater System -- 3.1.2.2 Integrality and Unity of Groundwater System -- 3.1.3 Theoretic Basis for Water Resources Assessment of Groundwater System -- 3.2 Analysis of Groundwater System and Hydrogeological Conditions -- 3.2.1 Generalities of Aquifer System Conditions -- 3.2.1.1 Hydrogeological Characteristics of Shalawusu Formation -- 3.2.1.2 Hydrogeological Characteristics of the Burnt Rock -- 3.2.1.3 Hydrogeological Characteristics of the Flood Land and Terrace of Ulan Mulun River -- 3.2.2 Hydrogeological Characteristics of Major Water Source Sites -- 3.2.2.1 Division of Water Sources in the Study Area -- 3.2.2.2 Water Sources in Gongnieergaigou -- 3.2.2.3 Water Source in Kaokaolagou -- 3.2.2.4 Halagou Water Source -- 3.2.2.5 Liugengou Water Source -- 3.2.3 Division and Major Hydrogeological Characteristics of Ground Water System -- 3.2.3.1 Lateral Boundary -- 3.2.3.2 Vertical Boundary -- 3.2.3.3 Division of Groundwater System and Subsystem -- 3.3 Summary -- References -- 4 Simulation, Assessment, and Management of the Key Water Source Sites -- 4.1 Simulation of the Key Water Source Sites of Groundwater System -- 4.1.1 Generalization of Hydrogeological Conditions -- 4.1.2 Generalization of Mathematic Model -- 4.1.3 Definite Condition -- 4.1.3.1 Selection of Simulation Period -- 4.1.3.2 Initial Condition -- 4.1.3.3 Treatment of Source-Sink Terms of Model -- 4.1.4 Parameter Inversion. , 4.1.4.1 Zoning of Hydrogeological Parameters -- 4.1.4.2 Inversion of Hydrogeological Parameters -- 4.1.5 Results and Analysis of Running Model -- 4.2 Feasibility Assessment of Joint Extraction of Groundwater from Wells and Springs -- 4.2.1 Groundwater Management Model -- 4.2.1.1 Theoretical Basis -- 4.2.1.2 Response Matrix of Groundwater Level -- 4.2.2 Setup of the Optimized Management Model of Conjoint Groundwater Extraction from Wells and Springs -- 4.2.2.1 Planned Wells and Control Points -- 4.2.2.2 Determination of the Plan Period and the Time Interval of Management -- 4.2.2.3 Objective Function -- 4.2.2.4 Constraint Conditions -- 4.2.3 Resolving and Analysis of the Optimized Management Model of Conjoint Groundwater Extraction from Wells and Springs -- 4.2.3.1 Mathematic Model and Its Decomposition -- 4.2.3.2 Calculation of the Response Function and the Additional Water Level -- 4.2.3.3 Algorithm Implementation and Results -- 4.3 Summary -- References -- 5 Assessment of Coal Mining Impact on Water Resources -- 5.1 The Impact of Coal Mining on Water Resources Circulation -- 5.1.1 Change of the Transformation Relation Between Surface Water and Groundwater -- 5.1.2 Acceleration of the Infiltration Rate of Rainfall and Surface Water, Reduction of Evaporation -- 5.1.3 Mine Drainage Makes Water Circulation Complicated -- 5.2 Impact of Coal Mining on the Structure of Aquifer in Seam Roof -- 5.3 Impact of Coal Mining on Surface Water -- 5.3.1 Impact of Coal Mining on Surface Water System -- 5.3.2 Impact of Coal Mining on Surface Water Quality -- 5.4 Impact of Coal Mining on Groundwater -- 5.4.1 Relationship Between the Drop of Groundwater Level and Destruction of Overburden Rocks -- 5.4.2 Impact of Coal Mining on Water Level of the Major Aquifer -- 5.4.3 Impact of Coal Mining on Groundwater Flow Field -- 5.4.3.1 The Original Groundwater Flow Field. , 5.4.3.2 Variation of Groundwater Flow Field During Mining -- 5.4.4 Impact of Coal Mining on Groundwater Quality -- 5.5 Impact of Coal Mining on Water Resources Quantity -- 5.5.1 Impact of Coal Mining on the Total Water Resources -- 5.5.1.1 Groundwater Drawdown Induced by Coal Mining Has Reduced the Evaporation of the Shallow Groundwater -- 5.5.2 Groundwater Drawdown Induced by Coal Mining Reduced the Output of Springs -- 5.5.2.1 Groundwater Drawdown Induced by Coal Mining Increased the Capture of Water Resources from the Exterior Drainage Basin -- 5.5.3 Impact of Coal Mining on the Available Water Resources -- 5.5.3.1 Impact of Coal Mining on the Available Surface Water Resources -- 5.5.3.2 Impact of Coal Mining on the Available Groundwater Resources -- 5.6 Summary -- References -- 6 Study on MultiObjective Optional Allocation of Complex Water Resources System -- 6.1 Generalities of the MultiObjective Optimal Allocation Model of Water Resources -- 6.1.1 Mathematical Model -- 6.1.2 Decision Variables -- 6.1.3 Objective Function -- 6.1.3.1 Objective of Environmental Quality -- 6.1.3.2 Objective of System Operation -- 6.1.4 Constraint Conditions -- 6.1.4.1 Resources Constraint -- 6.1.4.2 Demand Constraint -- 6.2 Setup of the Optimal Allocation Model of Complex Water Resources System in the Study Area -- 6.2.1 Principle for Model Setup -- 6.2.2 Selection of Decision Variables -- 6.2.3 Setup of Objective Function and Objective Constraint -- 6.2.4 Determination of the Constraint Conditions -- 6.3 Solution Method of Model -- 6.4 Results and Analysis of Running Model -- 6.4.1 Analysis of Water Resources Optimization Results in Daliuta Shaft District -- 6.4.1.1 Analysis of Water Supply Sources and Output of Supplying Water in Different Level Years -- 6.4.1.2 Analysis of the Balance Between Supply and Demand of Water Resources in Different Level Years. , 6.4.1.3 Analysis of Water Supply Potential.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Mine water-Prevention. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (521 pages)
    Edition: 1st ed.
    ISBN: 9783030670597
    Series Statement: Professional Practice in Earth Sciences Series
    DDC: 622.5
    Language: English
    Note: Intro -- Preface -- Contents -- 1 Water Hazards in Coal Mines and Their Classifications -- 1.1 Introduction -- 1.2 Water Inrush Conceptual Site Models for Coal Mines of China -- 1.2.1 Development of Water Inrush Conceptual Site Models -- 1.2.2 Benefits of Water Inrush Conceptual Site Models -- 1.3 Classification of Water Inrush for Coal Mines of China -- 1.3.1 Principles for Classification of Mine Water Inrush -- 1.3.2 Types of Mine Water Inrush -- 1.3.3 Characteristics of Mine Water Inrushes -- 1.4 Hydrogeological Classification for Mine Water Hazard Control -- 1.4.1 Criteria of Hydrogeological Classification -- 1.4.2 Hydrogeological Classification of Coal Mines in China -- 1.4.3 Hydrogeological Characteristics of Mines -- 1.5 Advances in Prevention and Control Technologies of Mine Water Hazards -- 1.5.1 Updated Mining Principles -- 1.5.2 Evolution of Water Inrush Coefficient -- 1.5.3 Supplemental Investigation and Water Inrush Prediction -- 1.5.4 Advanced Detection and Dewatering Technologies -- 1.5.5 Early Warning Technique -- 1.5.6 Innovated Grouting Technique -- References -- 2 Mine Water Inrush Mechanisms and Prediction Methods -- 2.1 Overview of Water Inrush Studies -- 2.2 Water Inrush Mechanisms in North China's Coalfields -- 2.2.1 Hydrogeological Background -- 2.2.2 Relationship Between Aquiclude Thickness and Groundwater Pressure -- 2.2.3 Impact of Mining Activities on Geologic Barrier -- 2.2.4 Laboratory Experiments on Failure of Geologic Barrier -- 2.2.5 Initial Conductive Zone in Geologic Barrier -- 2.2.6 In-Situ Hydrofracturing Tests -- 2.3 Water Inrush Mechanism Through Karst Collapse Columns -- 2.3.1 Karst Collapse Columns and Their Relationship with Mining -- 2.3.2 Hydrogeological Characteristics of Karst Collapse Columns -- 2.3.3 Water Inrushes Through Karst Collapse Columns -- 2.4 Prediction Methods. , 2.4.1 Water Inrush Coefficient Method -- 2.4.2 Vulnerability Index Method -- 2.4.3 Three-Map and Two-Prediction Method -- 2.4.4 Five-Map and Two-Coefficient Method -- References -- 3 Modeling of Groundwater Flow in Karst Aquifers for Mine Water Control -- 3.1 Inputs to Karst Hydrogeological Systems -- 3.1.1 Discharge-Storage Method -- 3.1.2 Recession-Curve-Displacement Method -- 3.1.3 Meteorological Model -- 3.2 Groundwater Flow in Karst Hydrogeological Systems -- 3.2.1 Groundwater Flow Patterns in Karst Aquifers -- 3.2.2 Influenced Flow Patterns -- 3.2.3 Confluent Flow in Karst Aquifers -- 3.2.4 Siphon Karst Flow -- 3.3 Water Budget Analyses -- 3.3.1 Discharge Hydrograph -- 3.3.2 Discharge Recession Analysis -- 3.3.3 Discharge Chemograph -- 3.3.4 Groundwater Level Hydrograph -- 3.4 Statistical and Stochastic Methods -- 3.4.1 Regression Analysis -- 3.4.2 Kernel Analysis -- 3.4.3 Threshold Autoregressive Analysis -- 3.5 Mixing-Cell Models -- 3.5.1 Discrete-State-Compartment Model -- 3.5.2 Water Tank Models -- 3.6 Physics-Based Models -- 3.6.1 Equivalent-Porous-Medium Models -- 3.6.2 Discrete-Fracture Models -- 3.6.3 Double-Continuum Models -- 3.6.4 Determination of Hydraulic Parameters at Respective Scales -- 3.7 Quantitative Analysis of Tracer Tests -- 3.7.1 Tracer-Breakthrough Curves -- 3.7.2 Estimation of Hydraulic Parameters of Karst Conduits -- 3.7.3 Evaluation of Dynamic Dispersion in Karst Aquifers -- 3.8 Application of Dual-Porosity Model to Groundwater Simulation in the Ordovician Limestone in Jiaozuo Coalfield, China -- 3.8.1 Introduction to Jiaozuo Coalfield -- 3.8.2 Karst Conduit Distribution -- 3.8.3 Calibration of the Dual-Porosity Model -- References -- 4 Prevention and Control of Mine Water Hazards from Underlying Aquifers. , 4.1 Water Prevention and Control Technology in Mining Lower Coal Seams Under Potentiometric Pressure in Xingtai Dongpang Mine -- 4.1.1 Mine Background -- 4.1.2 Application of Water Prevention and Control Technology to Mining Under Potentiometric Pressure -- 4.2 Grouting Technology in Thin-Bedded Limestone to Prevent Water Inrushes from Underlying Aquifers in Zhuzhuang Coal Mine of Huaibei Coalfield -- 4.2.1 Background -- 4.2.2 Large-Scale Advance Grouting Technology in Transforming Limestone into Water Barrier -- 4.3 Utilization of the Top of the Ordovician Limestone in the Sangshuping Mine of Hancheng and the Underground Grouting Transformation Technology -- 4.3.1 Mine Background -- 4.3.2 Utilization of Top of the Ordovician Limestone and Underground Grouting Transformation Technology -- 4.4 Emergency Mitigation Technology of Water Inrush Induced Mine Flooding in Luotuoshan Coal Mine in Wuhai Energy Co., Ltd. -- 4.4.1 Overview -- 4.4.2 Emergency Water-Plugging Technology in #16 Coal Seam Air Return Lane -- 4.4.3 Comprehensive Investigation Technology of Water Inrush Point -- 4.5 Characterization and Remediation of Karst Collapse Columns in Renlou Coal Mine, China -- 4.5.1 Mine Background -- 4.5.2 Water Source Discrimination by Temperature and Hardness Measurements -- 4.5.3 Geophysical Investigations -- 4.5.4 Borehole Exploration and Grouting -- 4.5.5 Summary -- 4.6 Design and Construction of Watertight Plugs in Permeable Karst Collapse Columns in Restoration of Flooded Dongpang Mine, China -- 4.6.1 Mine Background -- 4.6.2 Construction of the Watertight Plug -- 4.6.3 Completion Criteria of Grouting -- 4.6.4 Grout Intake Distribution -- 4.6.5 Evaluation of Plug Effectiveness -- 4.6.6 Summary -- 4.7 Utilization of Paleokarst Crust of Ordovician Limestone in Water Inrush Control in Sihe Coal Mine, Shanxi Province. , 4.7.1 Introduction to Paleokarst Crust -- 4.7.2 Characteristics of Paleokarst Crust at Sihe Mine -- 4.7.3 Hydrogeogical Properties of Fengfeng Formation -- 4.7.4 Thickness of Aquifuge in Fengfeng Formation -- 4.7.5 Summary -- 5 Prevention and Control of Mine Water Hazards from Overlying Aquifers -- 5.1 Water Control Technology for Overlying Thick-Bedded Sandstone Fissure Aquifer in Hujiahe Mine, Binchang, Shaanxi -- 5.1.1 Mine Background -- 5.1.2 Exploration and Prevention Techniques for Water Hazards Posed by the Overlying Thick Sandstone Fissure Aquifer -- 5.1.3 Exploration and Prevention Technologies of Water Hazards from Overlying Thick Sandstone Fissure Aquifers -- 5.2 Prevention and Control Technology for Water Disaster from Bed-Separation Voids of Overlying Formations in Hongliu Coal Mine, Ningdong Coalfield -- 5.2.1 Mine Background -- 5.2.2 Investigation and Mitigation of Bed-Separation Water Inrush -- 5.2.3 Summary of Bed-Separation Groundwater Control -- 5.3 Prevention Technology on Water and Sand Inrush in Halagou Coal Mine, Shendong Coalfield -- 5.3.1 Mine Background -- 5.3.2 Mechanism and Conditions of Water and Sand Inrush -- 5.3.3 Prevention and Control Technology of Water and Sand Inrush -- 6 Investigation and Prevention of Water Hazards from Old Mine Pools in Ordos -- 6.1 Background of Mining Area -- 6.2 Technical Approaches -- 6.3 Geophysical Methods -- 6.3.1 High-Density Electrical Resistivity Imaging -- 6.3.2 Transient Electromagnetic Method -- 6.3.3 Shallow Seismic Method -- 6.3.4 EH4 Magnetotelluric Method -- 6.3.5 Control-Source Audio Magnetotelluric Method -- 6.3.6 Magnetic Method -- 6.4 Achievements by Electrical and Magnetic Imaging -- 6.4.1 Geophysical Survey Layout -- 6.4.2 Results of Electrical Resistivity Imaging Survey -- 6.4.3 Results of Transient Electromagnetic Survey -- 6.4.4 Results of Magnetic Survey. , 6.5 Experience with Reconnaissance of Coal Mine Goafs in Ordos -- 6.5.1 Unified Organization and Implementation Led by Government -- 6.5.2 Reliance on Technical Institutions to Improve Reconnaissance Effectiveness -- 6.5.3 Active Cooperation of Coal Mine Enterprises -- 6.5.4 Concerted Efforts from All Parties -- 7 Technologies in Sealing Massive Karst Conduits in Restoration of a Flooded Open Pit Quarry in West Virginia, United States -- 7.1 Mine Background -- 7.2 Water Source and Pathway Investigations -- 7.3 Concept of Remediation Design -- 7.3.1 Selection of Cut off Methodology -- 7.3.2 Selection of Grouting Concepts -- 7.3.3 Evolution of the Remediation Program -- 7.4 Execution of Mitigation -- 7.4.1 Drilling -- 7.4.2 Grouting -- 7.5 Drilling and Grouting Quantities -- 7.6 Impact of Grouting Program on Quarry Inflow Characteristics -- 7.7 Summary -- References -- 8 Environmental Impact Assessment in Hongliulin Coal Mine -- 8.1 Mine Background Setting -- 8.1.1 Geographical Location -- 8.1.2 Mining History -- 8.1.3 Resources and Reserves -- 8.2 Geoenvironmental Background -- 8.2.1 Physical Geography -- 8.2.2 Topography -- 8.2.3 Stratum Lithology and Geological Structure -- 8.2.4 Aquifer and Aquiclude -- 8.2.5 Groundwater Flow, Recharge, and Discharge -- 8.2.6 Analysis of Groundwater Recharge Conditions in the Mine -- 8.2.7 Geotechnical Conditions -- 8.2.8 Characteristics of Coal Seam -- 8.2.9 Other Human Engineering Activities in the Mine and its Vicinity -- 8.3 Geoenvironmental Impact Assessment -- 8.3.1 Evaluation Scope and Level -- 8.3.2 Assessment of Background Conditions -- 8.3.3 Soil Erosion Intensity -- 8.3.4 Vegetation and Coverage -- 8.3.5 Summary -- 8.4 Predictive Geoenvironmental Assessment -- 8.4.1 Predictive Assessment of Geological Disasters -- 8.4.2 Predictive Assessment of Aquifers. , 8.4.3 Evaluation of Impact on Topography and Landscape.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Hydrogeology. ; Water-supply. ; Geotechnical engineering. ; Water pollution.
    Description / Table of Contents: Water Hazards in Coal Mines and Their Classifications -- Mechanisms of Water Hazards in Coal Mines -- Techniques of Identifying Water Hazards in Coal Mines -- Evaluations and Prediction of Water Hazards in Coal Mines -- Monitoring and Early-Warning Techniques for Water Hazards in Coal Mines -- Proactive Mitigation of Water Inrush Risk on Regional Scales -- Emergency Responses to Water Hazards in Coal Mines -- Integration of Mine Water into Resource Planning -- Regulations on Water Hazard Control and Management -- Case Studies on Prevention and Mitigation of Water Hazards in Coal Mines.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XIV, 510 p. 223 illus., 121 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030670597
    Series Statement: Professional Practice in Earth Sciences
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...