GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Alginates-Industrial applications. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (336 pages)
    Edition: 1st ed.
    ISBN: 9781119487982
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Alginates-Introduction, Characterization and Properties -- 1 Alginates: General Introduction and Properties -- 1.1 Introduction -- 1.2 History -- 1.3 Structure -- 1.4 Alginates and Their Properties -- 1.4.1 Gel Formation -- 1.4.1.1 Ionic Alginate Gels -- 1.4.1.2 Alginic Acid Gels -- 1.4.2 Molecular Weight -- 1.4.3 Solubility and Viscosity -- 1.4.4 Ionic Cross-Linking -- 1.4.5 Chemical Properties -- 1.5 Sources -- 1.6 Biosynthesis of Bacterial Alginate -- 1.6.1 Precursor Synthesis -- 1.6.2 Polymerization and Cytoplasmic Membrane Transfer -- 1.6.3 Periplasmic Transfer and Modification -- 1.6.3.1 Transacetylases -- 1.6.3.2 Mannuronan C 5-Epimerases -- 1.6.3.3 Lyases -- 1.6.5 Export through the Outer Membrane -- 1.7 Conclusion -- Acknowledgment -- Conflict of Interests -- References -- 2 Alginates Production, Characterization and Modification -- 2.1 Introduction -- 2.2 Alginate: Production -- 2.2.1 Screening of Alginate-Producing Microbes -- 2.2.2 Production of Alginate by Bacteria -- 2.2.3 Production of Alginate by Pseudomonas -- 2.2.4 Production of Alginate by Azotobacter spp. -- 2.2.5 Influence of Medium Components -- 2.2.5.1 Effect of Nutrients on Bacterial Alginate Production -- 2.2.5.2 Effect of Phosphate on Bacterial Alginate Production -- 2.2.5.3 Effect of Dissolved Oxygen on Bacterial Alginate Production -- 2.2.5.4 Effect of Agitation in the Medium for the Production of Alginate -- 2.2.6 Commercial Production of Alginate -- 2.3 Characterization of Physicochemical Properties of Alginate -- 2.3.1 Composition of Alginate Polymer Chains -- 2.3.2 XRD, FTIR, and NMR Spectroscopy for Alginate Structure Analysis -- 2.3.3 Rheology and Mechanical Characterization of Alginate Gels and Solutions -- 2.4 Modification of Alginates -- 2.4.1 Chemical Modification -- 2.4.2 Oxidation. , 2.4.3 Sulfation -- 2.4.4 Phosphorylation -- 2.4.5 Graft Copolymerization -- 2.4.6 Esterification -- 2.4.7 Carbodiimide Coupling -- 2.4.8 Covalent Cross-Linking -- 2.5 Future Perspectives -- 2.6 Conclusions -- References -- 3 Alginate: Recent Progress and Technological Prospects -- 3.1 Introduction -- 3.2 Structure -- 3.3 Sources -- 3.4 Characteristics of Alginate Salts -- 3.5 Properties -- 3.6 Applications -- 3.7 Future Perspectives -- 3.8 Advantages -- 3.9 Disadvantages -- 3.10 Conclusion -- Acknowledgments -- References -- 4 Alginate Hydrogel and Aerogel -- 4.1 Introduction -- 4.2 Alginate Hydrogel -- 4.2.1 Preparation of Alginate Hydrogels -- 4.2.1.1 Ionic Cross-Linking -- 4.2.1.2 Covalent Cross-Linking -- 4.2.1.3 Thermal Gelation -- 4.2.1.4 Cell Cross-Linking -- 4.2.2 Biomedical Applications -- 4.2.2.1 Pharmaceutical Applications -- 4.2.3 Tissue Regeneration with Protein and Cell Delivery -- 4.2.3.1 Blood Vessels -- 4.2.3.2 Bones -- 4.2.3.3 Cartilage -- 4.2.3.4 Muscle, Nerve, Pancreas, and Liver -- 4.3 Alginate Aerogel -- 4.3.1 Properties of Alginate Aerogels -- 4.3.1.1 Bulk Density and Pore Volume -- 4.3.1.2 Specific Surface Area -- 4.3.1.3 Compressibility -- 4.3.1.4 Thermal Conductivity and Absorption -- 4.3.2 Preparative Methods -- 4.4 Future Perspectives -- References -- Part 2: Alginates in Biomedical Applications -- 5 Alginate in Biomedical Applications -- 5.1 Introduction -- 5.2 Chemical Structure and Properties of Alginate -- 5.3 Types of Interaction of Alginate -- 5.4 Biomedical Application of Alginates -- 5.5 Future Perspective of the Use and Biomedical Applications -- References -- 6 Alginates in Pharmaceutical and Biomedical Application: A Critique -- 6.1 Introduction -- 6.2 Structure of Alginate -- 6.3 Different Types of Alginates Used in Pharmaceutical Industries -- 6.4 Properties of Alginate. , 6.5 Pathway for the Biosynthesis of Alginate -- 6.6 Regulatory Consideration of Alginate -- 6.7 Applications -- 6.7.1 Other Applications -- 6.8 Conclusion -- References -- 7 Alginates in Evolution of Restorative Dentistry -- 7.1 Introduction -- 7.2 Method of Alginate Extraction -- 7.3 Evolution of Alginate in Restorative Dentistry -- 7.3.1 Problems with Conventional Alginate -- 7.3.2 Current Trends and Modification of Alginate -- 7.3.2.1 Extended Pour Time Alginate -- 7.3.2.2 Dust-Free Alginates -- 7.3.2.3 Infection-Free Alginates -- 7.3.2.4 High Viscosity Alginates -- 7.3.2.5 Alginates in Two Pastes Form -- 7.3.2.6 Tray Adhesive Alginates -- 7.4 The Art of Impression Taking Using Alginates -- 7.4.1 Selection of Impression Trays -- 7.4.2 Mixing and Loading Alginates -- 7.4.3 Preparation of the Oral Cavity before Impression Taking -- 7.4.4 Impression Taking Using Alginate Material -- 7.4.5 Removal and Inspection of Alginate Material -- 7.4.6 Effects of Cast Production Techniques -- 7.5 Conclusions -- References -- 8 Alginates in Drug Delivery -- 8.1 Introduction -- 8.2 Chemistry of Alginates -- 8.2.1 Hydrogel Formation by Alginates -- 8.2.1.1 Preparation of Hydrogel -- 8.3 Pharmaceutical and Biomedical Chemistry of Alginates -- 8.3.1 Factors Governing Drug Encapsulation and Drug Delivery Processes -- 8.3.1.1 Delivery and Encapsulation of Small Drugs -- 8.3.1.2 Macromolecular Drug Delivery by Alginates -- 8.4 Conclusions -- Acknowledgments -- References -- 9 Alginate in Wound Care -- 9.1 Introduction -- 9.2 Sources and Synthesis of Alginate -- 9.3 Physicochemical Properties of the Alginate Biopolymer -- 9.4 Biomedical Applications of Alginate -- 9.4.1 Alginate in Wound Care -- 9.4.1.1 Pure Alginate Polymer-Based Wound Dressing -- 9.4.1.2 Intercellular Mediators Incorporated Alginate Polymer-Based Wound Dressing. , 9.4.1.3 Zinc/Alginate- and Silver/Alginate-Based Wound Dressing -- 9.4.1.4 Chitosan/Alginate- and Collagen/Alginate-Based Wound Dressing -- 9.4.1.5 Alginate Fiber-Based Wound Dressing -- 9.4.1.6 Alginate Hydrogel-Based Wound Dressing -- 9.5 Opportunities and Future Thrust -- References -- 10 Alginate-Based Biomaterials for Bio-Medical Applications -- 10.1 Introduction -- 10.2 Alginate: General Properties -- 10.2.1 Chemical Properties, Structure, and Characterization -- 10.3 Extraction and Preparation -- 10.3.1 Gelation and Cross-Linking of Alginate -- 10.3.2 Ionic Cross-Linking -- 10.3.3 External Gelation -- 10.3.4 Internal Gelation -- 10.3.5 Covalent Cross-Linking -- 10.3.6 Large Bead Preparation -- 10.3.7 Microbead Preparation -- 10.4 Alginate Hydrogels -- 10.5 Photocross-Linking -- 10.6 Shape-Memory Alginate Scaffolds -- 10.7 Biodegradation of Alginate -- 10.8 Biomedical Application of Alginates -- 10.8.1 Controlled Chemical and Protein Drug Delivery -- 10.8.2 Wound/Injury Dressings -- 10.8.3 Cell Culture -- 10.8.4 Tissue Regeneration -- References -- Part 3: Alginates in Food Industry -- 11 Alginates for Food Packaging Applications -- 11.1 Introduction -- 11.2 Biopolymer in Food Industry -- 11.3 Alginates in Food Packaging -- 11.4 Biosynthesis of Alginate -- 11.5 Application of Alginate in Formation of Biofilm -- 11.5.1 Preparation of Packaging Films -- 11.5.2 Role of Alginate in Biofilm Formation -- 11.6 Packaging Properties of Alginate -- 11.6.1 Thermostability of Alginate Packaging -- 11.6.2 Water Solubility -- 11.6.3 Water Vapor Permeability -- 11.6.4 Tensile Strength -- 11.6.5 Oxygen Permeability -- 11.6.6 Barrier Property -- 11.6.7 Antimicrobial Activity -- 11.7 Effect of Alginate on the Quality of Food -- 11.8 Interaction between Food and Alginates -- 11.9 Environmental Effects on Alginate Packaging -- 11.10 Market Outlook. , 11.11 Conclusion -- References -- 12 Potential Application of Alginates in the Beverage Industry -- 12.1 Introduction -- 12.2 Alginate Source -- 12.3 Extraction of Alginates -- 12.4 Physical, Chemical and Functional Properties of Alginate -- 12.5 Uses as a Food Additive/Ingredient -- 12.6 Alginate as Stabilizer -- 12.7 As Encapsulating Wall Material -- 12.7.1 Immobilization of Biocatalysts -- 12.7.2 Probiotics -- 12.7.3 Improvement of the Alginate Encapsulation: Prebiotics Addition -- 12.8 Conclusion -- References -- 13 Alginates in Comestibles -- 13.1 Introduction -- 13.2 Alginates in Agricultural Marketing -- 13.3 Use of Alginates in Food Industry -- 13.3.1 Thickeners and Gelling Agents -- 13.3.2 Stabilizers and Emulsifiers -- 13.3.3 Texturizers -- 13.3.4 Encapsulation -- 13.3.5 Food Coating -- 13.4 Use of Alginates for Pets -- 13.5 Effect of Dietary Alginates -- 13.6 Alginate Safety -- 13.7 Conclusion -- References -- Part 4: Alginates Future Prospects -- 14 Alginates: Current Uses and Future Perspective -- 14.1 Introduction -- 14.2 Sources of Alginate Synthesis -- 14.2.1 Brown Seaweeds -- 14.2.2 Bacteria -- 14.3 Synthesis of Alginate -- 14.3.1 Alginate Biosynthesis Gene -- 14.4 Properties of Alginates -- 14.4.1 Molecular Weight -- 14.4.2 Solubility -- 14.4.3 Stability -- 14.4.4 Ionic Binding Property -- 14.4.5 Gel Formation Ability -- 14.4.6 Biological Properties -- 14.5 Application of Alginates -- 14.6 Future Perspectives of Alginates -- 14.6.1 3D-Based Cell Culture Systems -- 14.6.2 Impressions -- 14.6.3 Cell-Based Microparticles -- 14.6.4 Alginate Oligosaccharides -- 14.6.5 Drug Targeting -- 14.6.6 Nanoparticulate Systems -- 14.7 Conclusion -- References -- Index -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Chitosan--Biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (473 pages)
    Edition: 1st ed.
    ISBN: 9781119364818
    Language: English
    Note: Intro -- Title page -- Copyright page -- Preface -- Section I: Production and Derivatives of Chitosan -- Chapter 1: Chitin and Chitosan: History, Composition and Properties -- 1.1 Chitin -- 1.2 Chitosan -- 1.3 Conclusion -- References -- Chapter 2: Nitrogenated Polysaccharides - Chitin and Chitosan, Characterization and Application -- 2.1 Introduction -- 2.2 Extraction of Nitrogenated Polysaccharides from Natural Sources -- 2.3 Research Methods of Nitrogenated Polysaccharides -- 2.4 Characterization of Nitrogenated Polysaccharides -- 2.5 Properties of Nitrogenated Polysaccharides -- 2.6 Applications -- 2.7 Conclusion -- References -- Chapter 3: Enzymes for Production of Chitin, Chitosan, and Chitooligosaccharide and Determination of Activities of Enzymes Using Chitinous Substrates -- 3.1 Introduction -- 3.2 Fermentation Methods for Production of Enzymes -- 3.3 Methods for Purification of Enzymes -- 3.4 Storage Conditions of Enzyme -- 3.5 Commercial Enzymes -- 3.6 Determinations of Enzyme Activities Using Chitinous Materials -- 3.7 Conclusion -- Acknowledgement -- References -- Chapter 4: Production of Chitin, Chitosan, and Chitooligosaccharide from Shrimp and Crab Shells Using Green Technology and Applications of Their Composite Materials -- 4.1 Introduction -- 4.2 Microorganisms for Production of Chitin and Chitosan Using Green Technology -- 4.3 Production of Chitin Using Microorganisms -- 4.4 Production of Chitosan from Chitin Using Chitin Deacetylase from Microorganisms -- 4.5 Production of Crude Chitooligosaccharide from Shrimp and Crab Shells Using Fermentation Technology -- 4.6 Applications of Chitin, Chitosan, Chitooligosaccharides and Their Composite Materials -- 4.7 Conclusion -- Acknowledgement -- References -- Chapter 5: Chitosan and Its Derivatives: Overview of Commercial Applications in Diverse Fields -- 5.1 History. , 5.2 Synthesis of Chitosan -- 5.3 General Properties -- 5.4 Biological Properties -- 5.5 Physicochemical Aspects -- 5.6 Molecular Weight -- 5.7 Stability -- 5.8 Fabrication -- 5.9 Self-Assembly -- 5.10 Strategies Self-Assembly -- 5.11 Chief Significance -- 5.12 Various Forms -- 5.13 Chemical Modification -- 5.14 Technologic Features for Medicinal Utilization -- 5.15 Synthetic Procedure of Chitosan Nanoparticles -- 5.16 Modified Chitosan -- 5.17 Carboxymethyl Chitosan (CMC) -- 5.18 Michael Reaction -- 5.19 Antioxidant -- 5.20 Antibacterial Properties -- 5.21 Antimicrobial Activity -- 5.22 Antiviral Activity -- 5.23 Biological Adhesive -- 5.24 Bonding Purposes -- 5.25 Biodegradation -- 5.26 Parameter Moving Transfection Competence -- 5.27 Conjugation -- 5.28 Functionalization of Chitosan -- 5.29 Schiff's Base Formation -- 5.30 Reductive Amination -- 5.31 Chitosan-Proteins Interaction -- 5.32 Absorption Enhancer -- 5.33 Chitosan-Starch Blends -- 5.34 Application in Various Fields -- 5.35 Conclusion -- References -- Chapter 6: Chitin and Chitosan-Complexes and Their Applications -- 6.1 Introduction -- 6.2 Synthesis of Chitosan from Chitin -- 6.3 Different Properties of Chitosan -- 6.4 Polyelectrolyte Complexes of Chitosan -- 6.5 Complexes of Polyelectrolyte between Chitosan and Naturally Occurring Polymers -- 6.6 Various Useful and Important Applications of Chitosan -- 6.7 Conclusion -- Acknowledgement -- References -- Chapter 7: Enzymes from Genetically Modified Microorganisms for Production of Chitin, Chitosan, and Chitooligosaccharide -- 7.1 Introduction -- 7.2 Enzymes for Production of Chitin/Chitosan, and Chitooligosaccharide -- 7.3 Enzyme and DNA Technology for Production of Chitin, Chitosan, and CTO -- 7.4 Determinations of Enzyme Activities Using Chitinous Materials -- 7.5 Conclusion -- References. , Section II: Chitosan in Textile and Food Industry -- Chapter 8: Chitosan Applications for the Food Industry -- 8.1 Introduction -- 8.2 Biological Activities of Chitosan and Its Derivatives -- 8.3 Chitosan and Its Derivatives for Food Applications -- 8.4 Nutritional Aspects of Chitin and Chitosan -- 8.5 Preparation of Chitin and Chitosan Oligomers and Their Applications in the Food Industry as Health Supplements -- 8.6 Future Trends: Chitosan-Based Nanotechnology for Food Applications -- 8.7 Conclusion -- Acknowledgements -- References -- Chapter 9: Chitosan: Sustainable and Environmental-Friendly Resource for Textile Industry -- 9.1 Introduction -- 9.2 Chitosan and Chitosan Resources -- 9.3 Chitosan Treatment of Textiles -- 9.4 Textile Functionalities Achieved -- 9.5 Effluent Treatment Applications -- 9.6 Future Perspectives and Conclusion -- References -- Section III: Chitosan in Biomedical Applications -- Chapter 10: Perspectives of Chitin- and Chitosan-Based Scaffolds Dressing in Regenerative Medicine -- 10.1 Introduction -- 10.2 Scaffold Characteristics -- 10.3 Fabrication Techniques -- 10.4 Applications of Chitin and Chitosan as Regenerative Medicine -- 10.5 Conclusion -- References -- Chapter 11: Chitin - and Chitosan-Based Scaffolds -- 11.1 Introduction -- 11.2 Scaffold Components -- 11.3 Scaffold Requirements -- 11.4 Chitin - and Chitosan-Based Scaffolds Fabrication Techniques -- 11.5 Applications of Chitin and Chitosan for Regeneration of Various Tissues -- 11.6 Chitin - and CS-Based Scaffolds for Drug and Growth Factors Delivery -- 11.7 Chitin - and CS-Based Scaffolds/Dressings in Market -- 11.8 Conclusions -- 11.9 Future perspectives -- Abbreviations -- References -- Chapter 12: Nanopolymer Chitosan in Cancer and Alzheimer Biomedical Application -- 12.1 Introduction -- 12.2 Chitosan Applications in Cancer. , 12.3 Chitosan Applications in Alzheimer's -- 12.4 Conclusion -- References -- Chapter 13: Biomedical Significance of Chitin- and Chitosan-Based Nanocomposites -- 13.1 Introduction -- 13.2 Biomedical Applications -- 13.3 Conclusion -- References -- Chapter 14: Potential Biomedical Applications of Chitosan - and Chitosan-Based Nanomaterials -- 14.1 Introduction -- 14.2 Production of Chitin and Chitosan -- 14.3 Bioactivities of Chitin and Chitosan -- 14.4 Biomedical Application of Chitin - and Chitosan-Based Nanomaterials -- 14.5 Conclusion and Future Perspective -- Acknowledgement -- References -- Section IV: Chitosan in Agriculture and Water Treatment -- Chapter 15: Practical and Plausible Implications of Chitin- and Chitosan-Based Nanocomposites in Agriculture -- 15.1 Introduction -- 15.2 Applications of Chitin and Chitosan Nanocomposite in Agriculture -- 15.3 Conclusion -- References -- Chapter 16: Scope of Electrospun Chitosan Nanofibrous Web for its Potential Application in Water Filtration -- 16.1 Introduction -- 16.2 Chitosan as an Efficient Material for Water Purification/Disinfection -- 16.3 Electrospinning Process -- 16.4 Electrospun Chitosan Nanofibers Embedded with Silver Nanoparticles for Filtration of Water Contaminated with Bacteria -- 16.5 Chitosan-Based Nanocomposites for Water Filtration -- 16.6 Current Challenges and Future Perspectives -- References -- Chapter 17: Application of Chitin/Chitosan and its Derivatives as Adsorbents, Coagulants, and Flocculants -- 17.1 Introduction -- 17.2 Chitin and Chitosan -- 17.3 Properties of Chitin and Chitosan -- 17.4 Modification of Chitin and Chitosan -- 17.5 Application of Natural Polymers in Wastewater Treatment as Promising Adsorbents -- 17.6 Chitin and Chitosan as a New Type of Polymer Coagulant/Flocculants -- 17.7 Future Directions for Research -- 17.8 Conclusion -- Acknowledgments. , References -- Index -- End User License Agreement.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Nanostructured materials-Environmental aspects. ; Sustainable development. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (379 pages)
    Edition: 1st ed.
    ISBN: 9781119407379
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Green and Sustainable Advanced Materials: An Overview -- 1.1 History -- 1.2 Biomaterials -- 1.2.1 Dextran -- 1.2.1.1 Chemical Structure -- 1.2.1.2 Properties -- 1.2.1.3 Applications -- 1.2.2 Cellulose -- 1.2.2.1 Chemical Structure -- 1.2.2.2 Properties -- 1.2.2.3 Application -- 1.2.3 Gelatine -- 1.2.3.1 Chemical Structure -- 1.2.3.2 Properties -- 1.2.3.3 Application -- 1.2.4 Alginate -- 1.2.4.1 Chemical Structure -- 1.2.4.2 Properties -- 1.2.4.3 Application -- 1.2.5 Chitin -- 1.2.5.1 Chemical Structure -- 1.2.5.2 Properties -- 1.2.5.3 Application -- 1.2.6 Chitosan -- 1.2.6.1 Chemical Structure -- 1.2.6.2 Properties -- 1.2.6.3 Application -- 1.2.7 Pullulan -- 1.2.7.1 Chemical Structure -- 1.2.7.2 Properties -- 1.2.7.3 Applications -- 1.2.8 Curdlan -- 1.2.8.1 Chemical Structure -- 1.2.8.2 Properties -- 1.2.8.3 Application -- 1.2.9 Lignin -- 1.2.9.1 Chemical Structure -- 1.2.9.2 Properties -- 1.2.9.3 Application -- 1.2.10 Xanthan Gum -- 1.2.10.1 Chemical Structure -- 1.2.10.2 Properties -- 1.2.10.3 Applications -- 1.2.11 Hydrogels -- 1.2.11.1 Chemical Structure -- 1.2.11.2 Properties: -- 1.2.11.3 Application -- 1.2.12 Xylan -- 1.2.12.1 Chemical Structure -- 1.2.12.2 Properties -- 1.2.12.3 Application -- 1.2.13 Arabic Gum -- 1.2.13.1 Chemical Structure -- 1.2.13.2 Properties -- 1.2.13.3 Applications -- 1.3 CdS -- 1.4 Carbon Nanotube -- 1.5 Fe Containing Nanomaterial -- 1.6 Graphene -- 1.7 Graphene Oxide -- 1.8 Inulin -- 1.9 Pectin -- 1.10 Metal Oxide -- 1.10.1 TiO2 -- 1.10.2 ZnO -- 1.10.3 CeO2 -- 1.11 Polymer -- 1.11.1 Polystyrene -- 1.11.2 PANI -- 1.11.3 Starch -- 1.11.4 Dendrimer -- 1.12 Bentonite -- 1.13 Conclusion -- References -- 2 Characterization of Green and Sustainable Advanced Materials -- 2.1 Introduction -- 2.2 Characterization of Advanced Materials. , 2.3 Physical Characterization of Advanced Materials -- 2.3.1 Scanning Electron Microscopy -- 2.3.2 Energy-Dispersive X-Ray Spectroscopy -- 2.3.3 Transmission Electron Microscopy -- 2.3.4 X-Ray Diffraction -- 2.3.5 Ultraviolet Protection -- 2.3.6 Thermal Characterization (TGA, DTA, DSC, Cone Calorimetry) -- 2.3.6.1 Thermogravimetric Analysis -- 2.3.6.2 Differential Thermal Analysis -- 2.3.6.3 Differential Scanning Calorimetric Analysis -- 2.3.6.4 Cone Calorimetry -- 2.3.7 Characterization for Mechanical Properties of Advanced Materials -- 2.4 Chemical Characterization of Advanced Materials -- 2.4.1 EXAFS, XPS, and AES -- 2.4.2 ICP-MS, ICP OES, and SIMS -- 2.4.3 LC/GC/FTICR-MS -- 2.4.4 NMR -- 2.4.5 FTIR and Raman Spectroscopy -- 2.5 Conclusions -- References -- 3 Green and Sustainable Advanced Biopolymeric and Biocomposite Materials -- 3.1 Introduction -- 3.2 Classification of Green Materials -- 3.3 Biopolymers -- 3.4 Natural Fillers -- 3.5 Natural Fibers -- 3.6 Biocomposites -- 3.6.1 Thermoplastic Starch Based Composites -- 3.6.2 Polylactic Acid (PLA) Based Composites -- 3.6.3 Cellulose Based Composites -- 3.6.4 Plant Oil Based Composites -- 3.6.5 Polymer-Polymer Blends-Based Composites -- 3.7 Merits and Demerits of Green Materials -- 3.8 Recent Progress in Improvement of Material Properties -- 3.8.1 Hybridization -- 3.9 Current Applications of Biocomposites and Biopolymers -- 3.9.1 Green Fibers and their Potential in Diversified Applications -- 3.9.2 Textile Applications -- 3.9.3 Green Fibers for Pulp -- 3.9.4 Green Fiber for Biocomposites, Based on Lignocelluloses -- 3.9.5 Applications of Composites -- 3.9.6 Particleboards -- 3.10 Futuristic Applications of Biocomposites and Biopolymers -- 3.10.1 Development Prospects for Plant Fiber/Polymer Composites: -- 3.11 Conclusion -- References -- 4 Green and Sustainable Advanced Nanomaterials. , 4.1 Introduction -- 4.1.1 Green Chemistry and Nanoscale Science -- 4.1.2 Examples of Such Green Nanoparticles: -- 4.1.2.1 Beta-Carotene Molecule -- 4.1.2.2 Anthocyanin Molecule -- 4.1.2.3 Hydro Gel -- 4.2 Applications of Natural NanoOrganic Materials -- 4.2.1 Application of Beta-Carotene -- 4.2.2 Application of Anthocyanin -- 4.2.3 Application of Hydrogel -- 4.3 Conclusion -- References -- 5 Biogenic Approaches for SiO2 Nanostructures: Exploring the Sustainable Platform of Nanofabrication -- 5.1 Introduction -- 5.2 Synthesis of SiO2 Nanostructures -- 5.2.1 Physical Processes -- 5.2.2 Chemical Processes -- 5.2.3 Template Assisted Process -- 5.3 Bio-Mediated Sustainable Processes for SiO2 -- 5.3 Bio-Mediated Sustainable Processes for SiO2 Nanostructures -- 5.3.1 Bacterial Assisted Synthesis Process -- 5.3.2 Fungal Mediated Biogenic Synthesis Process -- 5.3.3 Plant Based Synthesis Process -- 5.3.4 Biomolecular Template Assisted Synthetic Process -- 5.4 Biogenic SiO2 Based Doped, Functionalized and Composite Nanostructures -- 5.4.1 Biogenic Synthesis of Doped and Functionalized SiO2 Nanostructures -- 5.4.2 Biogenic SiO2 Nanocomposites -- 5.5 Applications of Bio-Fabricated SiO2 Nanoparticles -- 5.5.1 Catalysis -- 5.5.2 Biomedicine -- 5.5.3 Energy and Environment -- 5.6 Conclusions -- Acknowledgements -- References -- 6 Green and Sustainable Advanced Composite Materials -- 6.1 Introduction -- 6.2 Applications of Polymers -- 6.3 The Problems of Synthetic Polymers -- 6.4 Why Biodegradable Polymers -- 6.5 Biodegradable Polymers -- 6.6 Copolymers -- 6.7 Examples of Biodegradable Polymers is Polyesters -- 6.7.1 Aliphatic Polyesters Polylactide PLA, Polycaprolactone PCL and Polyvalerolactone PVL -- 6.7.2 Preparation of Polyesters -- 6.7.2.1 Polycondensation -- 6.7.2.2 Ring Opening Polymerization (ROP) -- 6.7.3 Mechanism of ROP. , 6.7.3.1 Cationic Ring Opening Polymerization (CROP) -- 6.7.3.2 Anionic Rring Opening Polymerization (AROP) -- 6.7.3.3 Coordination-Insertion Polymerization -- 6.8 Conclusion -- References -- 7 Design and Processing Aspects of Polymer and Composite Materials -- 7.1 Introduction -- 7.2 Design and Processing -- 7.3 Natural Polymers and Their Applied Potentialities -- 7.3.1 Alginate - Physiochemical and Structural Aspects -- 7.3.2 Carrageenan - Physiochemical and Structural Aspects -- 7.3.3 Cellulose - Physiochemical and Structural Aspects -- 7.3.4 CS - Physiochemical and Structural Aspects -- 7.3.5 Dextran - Physiochemical and Structural Aspects -- 7.3.6 Guar Gum - Physiochemical and Structural Aspects -- 7.3.7 Xanthan - Physiochemical and Structural Aspects -- 7.4 Synthetic Polymers and Their Applied Potentialities -- 7.4.1 PAA - Physiochemical and Structural Aspects -- 7.4.2 PAM - Physiochemical and Structural Aspects -- 7.4.3 PVA - Physiochemical and Structural Aspects -- 7.4.4 PEG - Physiochemical and Structural Aspects -- 7.4.5 Poly(vinyl pyrrolidone) - Physiochemical and Structural Aspects -- 7.4.6 PLA - Physiochemical and Structural Aspects -- 7.5 Materials-Based Biocomposites -- 7.6 Concluding Remarks and Future Considerations -- Conflict of Interest -- Acknowledgements -- References -- 8 Seaweed-Based Binder in Wood Composites -- 8.1 Introduction -- 8.2 Methods and Techniques -- 8.2.1 Preparation of Raw Material -- 8.2.2 Seaweed Adhesive Preparation -- 8.2.3 Blending and Mat Forming -- 8.2.4 Conditioning -- 8.2.5 Data Analysis -- 8.3 Results and Discussion -- 8.3.1 Overview -- 8.3.2 The Physical Properties of Acacia Mangium Particleboard -- 8.3.2.1 Moisture Content -- 8.3.2.2 Density -- 8.3.3 Dimensional Stability of Acacia Mangium Particleboard -- 8.3.3.1 Water Absorption -- 8.3.3.2 Thickness Swelling. , 8.3.4 The Mechanical Properties of Acacia Mangium Particleboard -- 8.3.4.1 Modulus of Elasticity -- 8.3.4.2 Modulus of Rupture -- 8.3.4.3 Internal Bonding -- 8.4 Conclusion -- References -- 9 Green and Sustainable Textile Materials Using Natural Resources -- 9.1 Introduction -- 9.2 Sustainable Colouration of Textile Materials Using Natural Plant Waste Resources -- 9.2.1 Natural Dyeing with DSE on Silk Fabric -- 9.2.2 Natural Dyeing of Textile Materials Using Sterculia Foetida Fruit Shell Waste Extract -- 9.2.3 Natural Dyeing of Textile Materials Using Green CSE -- 9.2.4 Colouration of Textile Materials Using Resources from Temple Flower Waste -- 9.3 Sustainable Antibacterial Finishing of Textile Materials Using Natural Waste Resources -- 9.3.1 Antibacterial Activity of Delonix Regia Stem Shell Waste Extract on Silk Fabric -- 9.3.2 Antibacterial Textile Materials using Natural Sterculia foetida Fruit Shell Waste Extract -- 9.3.3 Antibacterial Textile Materials Using Waste Green CSE -- 9.4 Sustainable UV Protective Textile Materials Using Waste Natural Resources -- 9.4.1 UV Protective Silk Fabric Using DSE -- 9.4.2 UV Protective Textile Materials Using Sterculia Foetida FSE -- 9.4.3 UV Protective Textile Materials Using Waste Green CSE -- 9.5 Sustainable Green Flame Retardant Textile Materials Using Natural Resources -- 9.5.1 Flame Retardancy Imparted by Plant Based Waste Natural Resources -- 9.5.1.1 Flame Retardant Textile Materials Using Green CSE -- 9.5.1.2 Flame Retardant Textile Materials Using BPS -- 9.5.1.3 Flame Retardant Textile Materials Using SJ -- 9.5.1.4 Flame Retardant Textile Materials Using Starch -- 9.5.1.5 Flame Retardant Textile Materials Using PRE -- 9.5.2 Flame Retardancy Imparted by Animal Based Natural Resources -- 9.5.2.1 Flame Retardant Textile Materials Using Chicken Feather. , 9.5.2.2 Flame Retardant Textile Materials Using Casein.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Milton :Jenny Stanford Publishing,
    Keywords: Microbial polysaccharides-Industrial applications. ; Electronic books.
    Description / Table of Contents: This book focuses on marine polysaccharides; their derivatives, blends, composites and hydrogels; and their multifaceted applications in various fields. The book also discusses the various aspects of marine polysaccharides from the point of view of chemistry and related applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (323 pages)
    Edition: 1st ed.
    ISBN: 9780429608186
    DDC: 572.5661177
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- 1: Marine Polysaccharides: An Overview -- 1.1 Introduction -- 1.2 Sources -- 1.3 Modification -- 1.3.1 Blending -- 1.3.2 Chemical Modification -- 1.3.3 Hydrophobic Modification -- 1.3.4 Depolymerisation -- 1.3.5 Sulphation -- 1.4 Types of Marine Polysaccharides -- 1.4.1 Chitosan -- 1.4.2 Chitin -- 1.4.3 Carrageenan -- 1.4.4 Fucoidan -- 1.4.5 Alginate -- 1.4.6 Mauran -- 1.4.7 Ulvan -- 1.4.8 Agarose -- 1.4.9 Porphyran -- 1.5 Conclusions -- 2: Marine Microbial Polysaccharides: Promising lmmunomodulatory and Anticancer Potential -- 2.1 Introduction -- 2.2 Sources of Marine Microbial Polysaccharides and Their Structures -- 2.2.1 Marine Bacterial Polysaccharides -- 2.2.2 Marine Fungal Polysaccharides -- 2.2.3 Marine Microalgal Polysaccharides -- 2.3 lmmunoenhancing and Anti-Inflammatory Activities of Marine Microbial Polysaccharides -- 2.3.1 Macrophage Activation -- 2.4 Effects of Marine Microbial Polysaccharides on T-, B-, DC and NK Cells -- 2.4.1 Anti-Inflammatory Properties -- 2.5 Anticancer and Cancer-Preventive Properties of Marine Microbial Polysaccharides -- 2.5.1 Direct Anticancer Properties -- 2.5.2 Cancer-Preventive Properties -- 2.6 Conclusions and Perspectives -- 3: Carrageenans: Structure, Properties and Applications -- 3.1 Introduction -- 3.2 Sources and Extraction -- 3.3 Structure and Properties -- 3.4 Applications -- 3.4.1 Food Applications -- 3.4.2 Pharmaceuticals Applications -- 3.4.3 Drug Delivery Systems -- 3.4.4 Others Applications -- 3.5 Conclusions -- 4: Chitosan: A Versatile Biomaterial for the 21st Century -- 4.1 Introduction -- 4.2 Chitosan from Crustaceans -- 4.3 Physicochemical Properties of Chitosan -- 4.3.1 Degree of Acetylation -- 4.3.1.1 Fourier transform infrared spectroscopy -- 4.3.1.2 UV spectrometry. , 4.3.1.3 Nuclear magnetic resonance -- 4.3.1.4 Conductometry -- 4.3.1.5 X-ray diffraction -- 4.3.2 Molecular Weight -- 4.3.2.1 Mass spectrometry -- 4.3.3 Persistence Chain Length -- 4.3.4 Solubility -- 4.3.5 Chitosan Oligosacharrides -- 4.4 Modification of Chitosan -- 4.5 Methods for Preparation of Chitosan-Based Nanoparticles -- 4.5.1 Ionic Gelation Method -- 4.5.2 Emulsion Cross-Linking Method -- 4.5.3 Reverse Micellar Method -- 4.5.4 Chitin and Chitosan Nanofibres -- 4.6 Applications of Chitosan -- 4.6.1 Treatment of Industrial Effluents -- 4.6.2 Dye Equilibrium Constants -- 4.6.3 Antibacterial Activity -- 4.6.4 Drug Delivery -- 4.6.5 Vaccines -- 4.6.6 Gene Delivery -- 4.6.7 Tissue Engineering -- 4.6.8 Wound Healing -- 4.6.9 Hydrogels -- 4.6.10 Agriculture -- 4.7 Conclusion -- 5: Chitosan and Its Biomedical Applications -- 5.1 Introduction -- 5.2 Marine Sources of Chitosan -- 5.2.1 Shell Wastes of Crustaceans -- 5.2.2 Molluscs -- 5.2.3 Insects -- 5.2.4 Fungi -- 5.3 Purification of Chitosan from Chitin -- 5.3.1 Demineralisation -- 5.3.2 Deproteination -- 5.3.3 Deacetylation -- 5.4 Properties of Chitosan -- 5.4.1 Chemical Properties -- 5.4.2 Biological Properties -- 5.5 Characterisation of Chitosan -- 5.5.1 SEM -- 5.5.2 FTIR -- 5.5.3 XRD -- 5.5.4 NMR -- 5.5.5 Determination of Ash Content -- 5.5.6 Degree of Deacetylation -- 5.5.7 Elemental Analysis -- 5.5.8 Thermogravitimetric Analysis -- 5.5.9 Determination of Intrinsic Viscosity -- 5.5.10 Solubility -- 5.6 Derivatives of Chitosan -- 5.6.1 N-Pthaloylation of Chitosan -- 5.6.2 Dendronised Chitosan -- 5.6.3 Methylthiocarbamyl and Phenylthiocarbamyl Chitosan -- 5.6.4 Lactic/Glycolic Acid Chitosan -- 5.6.5 Chitosan Biocomposites -- 5.6.6 Chitosan Nanocomposites -- 5.6.7 Chitosan Nanoparticles -- 5.7 Biomedical Applications of Chitosan -- 5.7.1 Antimicrobial Activity -- 5.7.2 Antioxidant Activity. , 5.7.3 Antitumour Activity -- 5.7.4 Tissue Engineering -- 5.7.5 Wound Healing -- 5.7.6 Burn Treatment -- 5.7.7 Artificial Skin -- 5.7.8 Ophthalmology -- 5.7.9 Drug Delivery -- 5.8 Conclusion -- 6: Chitosan Nanoparticles: A Marine Polysaccharide for Biomedical Research -- 6.1 Introduction -- 6.2 Chitin -- 6.3 Chitin Structure in the Solid State -- 6.3.1 Solubility of Chitin and Chain Characterisation -- 6.3.2 Chitin Derivatives -- 6.3.3 Applications of Chitin -- 6.4 Chitosan -- 6.4.1 Chitosan Structure and Characterisation -- 6.4.2 Solubility of Chitosan -- 6.4.3 Degree of Deacetylation of Chitosan and Distribution of Acetyl Groups -- 6.4.4 Molecular Weight of Chitosan -- 6.4.5 Persistence Length of Chitosan -- 6.4.6 Chitosan-Based Materials -- 6.4.7 Applications of Chitosan -- 6.5 Chitosan Nanoparticles -- 6.6 Biomedical Applications of Chitosan Nanoparticles -- 6.6.1 Carrier for Varied Drugs and Gene Medication -- 6.6.2 Carrier of a Protein Drug -- 6.6.3 Carrier of Alternative Drugs -- 6.6.4 Routes of Administration -- 6.7 Conclusion -- 7: Properties and Applications of Chitosan-Based Nanocomposites -- 7.1 Introduction -- 7.2 Structure of Chitosan -- 7.3 Preparation of Chitosan -- 7.4 Properties of Chitosan -- 7.5 Preparation of Chitosan Nanoparticles -- 7.6 Preparation of Chitosan-Based Nanocomposites -- 7.7 Types of Chitosan-Based Nanocomposites -- 7.8 Properties of Chitosan-Based Nanocomposites -- 7.8.1 Mechanical Properties -- 7.8.2 Barrier Properties -- 7.8.3 Water Retention Property -- 7.8.4 Adsorbent Property -- 7.8.5 Biological Properties -- 7.9 Applications of Chitosan-Based Nanocomposites -- 7.9.1 Applications of Chitosan-Based Nanocomposites as Antimicrobials -- 7.9.2 Applications of Chitosan-Based Nanocomposites in Tissue Engineering -- 7.9.3 Applications of Chitosan-Based Nanocomposites in Sensors. , 7.9.4 Applications of Chitosan-Based Nanocomposites in Drug Delivery -- 7.9.5 Application of Chitosan-Based Nanocomposites as Adsorbents -- 7.9.6 Applications of Chitosan-Based Nanocomposites in Wound Healing -- 7.10 Conclusion -- 8: Chitosan as a Flocculant in Algae Harvesting -- 8.1 Introduction -- 8.2 Chitosan and Its Derivatives -- 8.3 Algae Harvesting Using Chitosan-Mediated Flocculation -- 8.3.1 Algae Culturing -- 8.3.2 Chitosan Treatment -- 8.4 Parameters Affecting Flocculation Efficiency -- 8.4.1 pH and Chitosan Dosage -- 8.4.2 Type of Solvent -- 8.4.3 Mixing Time and Rate -- 8.4.4 Cell Concentration -- 8.5 Advanced Chitosan-Modified Flocculants -- 8.5.1 Aluminium Sulphate-/Aluminium Chloride-Modified Chitosan -- 8.5.2 Chitosan-Modified Soils -- 8.5.3 Chitosan-Modified Fly Ash -- 8.5.4 Magnetic Chitosan -- 8.5.5 Nanochitosans -- 8.6 Conclusions -- 9: Recent Advances of Alginate Biomaterials in Tissue Engineering -- 9.1 Introduction -- 9.2 Alginate -- 9.3 Alginate in Tissue Engineering -- 9.3.1 Bone Tissue Engineering -- 9.3.2 Muscle Tissue Engineering -- 9.3.3 Skin Tissue Engineering -- 9.3.4 Cartilage Tissue Engineering -- 9.3.5 Liver Tissue Engineering -- 9.3.6 Dental Tissue Engineering -- 9.3.7 Other Tissue Engineering -- 9.4 Conclusion -- 10: Supplementary and Medicinal Properties of Ulvan Polysaccharides -- 10.1 Introduction -- 10.2 The Family Ulvacaeae -- 10.2.1 The Genus Ulva -- 10.2.2 The Genus Enteromorpha -- 10.3 Sources of Extraction -- 10.4 Chemical Properties of Ulvans -- 10.5 Characterisation of Ulvans -- 10.5.1 FTIR and NMR Analysis -- 10.5.2 Elemental Analysis -- 10.5.3 HPLC Analysis -- 10.5.4 HPGPC Analysis -- 10.6 Applications of Ulvans -- 10.6.1 Antitumour Activity -- 10.6.2 Antihyperlipidemic Activity -- 10.6.3 Antifungal Activity -- 10.6.4 lmmunomodulatory Activity -- 10.6.5 Antibacterial Activity. , 10.6.6 Antiviral Activity -- 10.6.7 Hepatoprotective Activity -- 10.6.8 Antiprotozoal Activity -- 10.6.9 Leishmanial Activity -- 10.6.10 Anti-Inflammatory Activity -- 10.6.11 Antioxidant Activity -- 10.6.12 Anticoagulant Activity -- 10.7 Supplementary Application of Ulvan -- 10.8 Conclusion -- 11: Nutraceutical Efficiency of Fucan Polysaccharides from Marine Sources -- 11.1 Introduction -- 11.2 Sources of Extraction -- 11.2.1 Brown Algae -- 11.2.2 Sea Cucumbers and Sea Urchins -- 11.3 Chemical Properties of Fucans -- 11.4 Structural Variants of Fucans -- 11.5 Characterisation of Fucans -- 11.5.1 Analysis of Sugars -- 11.5.2 FTIR Analysis -- 11.5.3 NMR Analysis -- 11.6 Nutraceutical Applications of Fucans -- 11.6.1 Anticoagulant Activity -- 11.6.2 Antithrombotic Activity -- 11.6.3 Antiviral Activity -- 11.6.4 lmmunomodulatory Activity -- 11.6.5 Anticancer Activity -- 11.6.6 Anti-Inflammatory Activity -- 11.6.7 Antioxidant Activity -- 11.6.8 Antiprotozoal Activity -- 11.6.9 Hepatoprotective Activity -- 11.6.10 Anticomplement Activity -- 11.6.11 Antiangiogenesis Activity -- 11.6.12 Antidiabetic Activity -- 11.6.13 Regenerative Medicine -- 11.7 Conclusion -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Hauppauge :Nova Science Publishers, Incorporated,
    Keywords: Biopolymers. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (319 pages)
    Edition: 1st ed.
    ISBN: 9781634858533
    Series Statement: Polymer Science and Technology
    Language: English
    Note: Intro -- Contents -- Preface -- About the Editors -- Contributors -- Natural Polymers: An Overview -- Abstract -- 1. Introduction -- 2. Natural Polymers -- 2.1. Dextran -- 2.2. Xanthan Gum -- 2.3. Guar Gum -- 2.4. Gum Arabic -- 2.5. Curdlan -- 2.6. Pullulan -- 2.7. Xylan -- 2.8. Lignin -- 2.9. Chitin -- 2.10. Chitosan -- 2.11. Gelatin -- 2.12. Alginate -- 2.13. Starch -- 2.14. Cellulose -- 2.15. Inulin -- 2.16. Pectin -- Conclusion -- References -- Cellulose: A Multifaceted Biopolymer -- Abstract -- 1. Introduction -- 2. Cellulose Structure -- 3. Cellulose Synthesizing Machinery (Cellulose Synthase) -- 4. Structural Models of Cellulose Synthase -- 5. Trafficking of Cellulose Synthase -- 6. Process of Cellulose Synthesis -- 7. Genes and Proteins -- 8. Solubility of Cellulose -- 9. Solvents for Dissolution of Cellulose -- 10. Cellulose Derivatives -- 11. Cellulose Based Fuel Cells -- 12. Cellulose Based Composites -- 13. Cellulose Based Hydrogels -- 14. Cellulose Based Ethanol Production -- 15. Cellulose Degradation -- Conclusion -- Acknowledgment -- References -- Carrageenan Based Hydrogels and Composites: A Systematic Investigation Reporting Their Multidimentional Essence -- Abstract -- 1. Introduction -- 2. Structure and Types -- 2.1. Kappa Carrageenan -- 2.2. Iota Carrageenan -- 2.3. Lambda Carrageenan -- 3. Carrageenan-Based Hydrogels -- 4. Carrageenan Based Composites -- 5. Anticoagulant and Antithrombotic Activity -- 6. Antiviral Activity -- 7. Anti-Tumour and Immunomodulatory Activities -- 8. Other Biological Activities -- 9. Industrial Uses of Carrageenan -- 10. Other Uses of Carrageenan -- Conclusion -- References -- Xanthan Gum: A Bacterial Polysaccharide Based Natural Polymer and Its Role in Biosynthesis of Silver Nanoparticles -- Abstract -- 1. Introduction -- 2. Methods. , 2.1. Biosynthesis of Silver Nanoparticles by Xanthan Gum and Its Characterization -- 2.2. Biological Applications of Xanthan Gum Biosynthesized Silver Nanoparticles -- 3. Results and Discussion -- 3.1. Characterization of Silver Nanoparticles Biosynthesized by Xanthan Gum -- 3.2. Biological Applications of Xanthan Gum Reduced Silver Nanoparticles -- Conclusion -- Acknowledgments -- References -- Hydrogels of Natural Polymers -- Abstract -- 1. Introduction -- 2. Cellulose-Based Hydrogels -- 2.1. Native Cellulose-Based Hydrogels -- 2.2. Hydrogels Based on Cellulose Derivatives -- 3. Hydrogels Based on Copolymers -- 4. Hemicellulose-Based Hydrogels -- 4.1. Hemicellulose Polymer as a Matrix for Hydrogels -- 4.2. Synthesis of Hydrogels by Enzymatic Crosslinking -- 4.3. Other Methods to Obtain Hemicellulose-Based Hydrogels -- 5. Hemicellulose-Chitosan Hydrogels -- 6. Biocomposite Hydrogels -- 7. Lignin-Based Hydrogels -- 8. Chitosan-Based Hydrogels -- 8.1. Physical Crosslinking -- 8.2. Chemical Crosslinking -- 9. Other Natural Polymers-Based Hydrogels -- Concluding Remarks and Future Trends -- References -- Nanopackaging from Natural Fillers and Biopolymers for the Development of Active and Intelligent Films -- Abstract -- 1. Introduction -- 2. Nanopackaging -- 3. Biopolymer-Based Nanocomposites -- 4. Active and Intelligent Films -- 5. Biopolymer-Based Nanocomposites with -- Active Fillers -- 5.1. Biopolymer/Zinc Oxide Nanocomposites -- 5.2. Biopolymer/Titanium Oxide Nanocomposites -- 5.3. Biopolymer/Silver Nanocomposites -- 5.4. Biopolymer/Nano-Encapsulated -- 6. Biopolymer-Based Nanocomposites with Intelligent Fillers -- 6.1. Time-Temperature Indicators -- Integrated Time-Temperature Indicators (TTIs) -- Critical Temperature Indicators -- 6.2. Leak Indicators -- 6.3. Humidity Indicators -- 6.4. Freshness Indicators. , 7. Toxicological Aspects of Active Nanocomposites -- 7.1. In Vitro Toxicity -- 7.2. Toxicokinetics -- 7.3. Neurotoxicity -- 7.4. Acute Toxicity -- 7.5. Long Term Toxicity -- 7.6. Reprotoxicity -- 7.7. Allergenicity (or Sensitization) -- 8. Regulatory Aspect -- Conclusion -- Acknowledgments -- References -- Natural Polymers: Scope in Textile Functionalization -- Abstract -- 1. Introduction -- 2. Functionalization Treatments Other Than Natural Polymers -- 3. Natural Polymers (Sources, Modifications and Functionalization) -- 4. Applications of Textiles Functionalized by Natural Polymers -- 4.1. Antimicrobial Clothing -- 4.2. Medical Textiles -- 4.3. Dye Uptake Enhancement/Textile Coloration -- 4.4. Anti-Creasing Treatment -- 4.5. UV Protective Clothing -- 4.6. Dirt Resistance Textiles -- Conclusion -- References -- Natural Polymer Based Composite Materials: Recent Advances, Perspectives, Modifications and Approaches -- Abstract -- 1. Introduction -- 2. Classification of Natural Polymer Based Composites -- 2.2. Cellulose Based Composites -- 2.2. Starch Based Composites -- 2.3. Chitosan Based Composites -- 2.4. Chitin Based Composites -- 2.5. Protein Based Composites -- 2.6. Nucleic Acid Based Composites -- 2.7. Natural Rubber Based Composites -- 3. Methods of Synthesis of Natural Polymer Based Composites -- 3.1. Sol-Gel Method -- 3.2. Chemical Reduction Method -- 3.3. Hydrothermal Method -- 3.4. Solvothermal Method -- 4. Literature Review -- 5. Applications of Natural Polymer Based Composites in Diverse Areas -- 5.1. Hydrogels -- 5.2. Biomedical -- 5.3. Tissue Engineering -- 5.4. Optoelectronics -- 5.5. Water Treatment -- 5.6. Biosensors -- 6. Modifications of Natural Polymers -- 7. Challenges and Future Prospects -- Conclusion -- Acknowledgments -- References. , Effects of Chitosan Coatings on the Lipid Oxidation of Mackerel Fillets During Its Refrigerated Storage -- Abstract -- 1. Introduction -- 2. Methods -- 2.1. Fish sample Preparation -- 2.2. Preparation of Coatings-Forming Solutions (CFS) -- 2.3. Coatings Application -- 2.3.4. Chemical Analyses -- 2.3.4.1. Fish sample Preparation for Lipid Extraction -- 2.3.4.2. Determination of Total Volatile Base Nitrogen (TVB-N) -- 2.3.4.3. Determination of Thiobarbituric Acid Reactive Substances (TBARS) -- 2.3.4.4. Determination of Malondialdehyde (MDA) -- 2.3.4.5. Determination of Conjugated Dienes (CD) -- 2.3.4.6. Microbiological Evaluation -- 2.3.4.7. Statistical Analysis -- 3. Results and Discussion -- Conclusion -- References -- Gelatin: A Comprehensive Report Covering Its Indispensable Aspects -- Abstract -- 1. Introduction -- 2. Properties of Gelatin -- 2.1. Gelatin Structure -- 2.2. Amino Acid Composition -- 2.3. Molecular Weight -- 2.4. Chemical Interactions -- 2.5. Gelatin Derived Peptides -- 3. Sources of Gelatin -- 4. Extraction of Gelatin -- 4.1. Pre-Treatment -- 4.2. Extraction -- 4.3. Recovery and Refinement -- 5. Types of Gelatin -- 6. Gelatin Based Composites and Blends -- 7. Gelatin Based Hydrogel -- Conclusion -- References -- Biocatalytic-Chitosan Nanoparticles: A Targeted Drug Delivery for Enhanced Cytotoxicity against Human Ovarian Cancer Cell Line (PA-1) -- Abstract -- 1. Introduction -- 2. Materials And Methods -- 2.1. Synthesis of Biocatalytic Chitosan Nanoparticles Using Bark Extract -- 2.2. Characterization of the Synthesized Biocatalytic Nanoparticles -- 2.3. In Vitro Cytotoxicity of the Synthesized Biocatalytic Chitosan Nanoparticles -- 2.3.1. Cell Culture and Maintenance -- 2.3.2. Cell Viability and Cytotoxicity Determination -- 3. Results and Discussion -- 3.1. Synthesis and Characterization of Nanoparticles. , 3.2. In Vitro Cytotoxicity of the Synthesized Biocatalytic Chitosan Nanoparticles -- Conclusion -- References -- Structure and Properties of Hydroxyethyl Cellulose Filled with Inorganic Particles on Base of Bentonite -- Abstract -- 1. Introduction -- 2. Structure and Properties of Bentonite, Bentonite/ Magnetite, and Organo-Bentonite Powders -- 2.1. Materials -- 2.2. Granulometric Composition -- 2.3. Surface Morphology and Composition -- 2.4. porous Structure -- 2.5. Crystal Structure -- 2.6. Infrared Spectroscopy -- 2.7. Zeta Potential of Particle in Suspensions -- 3. Effect of the Bentonite-Based Fillers on Structure and Properties of Hydroxyethyl Cellulose -- 3.1. Fabrication of the HEC/Bentonite, HEC/Bentonite/Magnetite, and HEC/Organo-Bentonite Films -- 3.2. Crystal Structure -- 3.3. Tensile Strength -- 3.4. Infrared Spectroscopy -- 3.5. Antimicrobial Activity -- 3.5.1. Antibacterial Activity -- 3.5.2. Antifungal Activity against Molds -- 3.5.3. Antifungal Activity against Candida Albicans -- Conclusion -- Acknowledgments -- References -- Chemistry and Structural Aspects of Chitosan towards Biomedical Applications -- Abstract -- 1. Introduction -- 2. General Aspects of Chitosan -- 3. Natural Polymer Chitosan -- 4. Structural and Chemistry of Chitosan -- 5. Chitosan Derivatives of Major Important -- 6. Advantages of Chitosan in Pharmaceuticals -- 7. Chitosan for Drug Delivery -- 7.1. Cancer -- 7.2. Neurosurgeries -- 7.3. Surgical Adhesive -- 7.4. Tissue Engineering -- 7.4.1. Neuronal Tissue Engineering -- 7.4.2. Bone Tissue Engineering -- 7.5. Wound Healing -- 7.6. Oral Drug Delivery -- 7.7. Nasal Route/Nasal Drug Delivery -- 7.8. Ocular Drug Delivery -- Conclusion and Future Perspectives -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Milton :Jenny Stanford Publishing,
    Keywords: Polysaccharides. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (300 pages)
    Edition: 1st ed.
    ISBN: 9781000093100
    DDC: 572.566
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Chapter 1: Polysaccharides: An Overview -- 1.1: Introduction -- 1.2: Types of Polysaccharides -- 1.2.1: Plant Polysaccharides -- 1.2.1.1: Cellulose -- 1.2.1.2: Hemicellulose -- 1.2.1.3: Fructans -- 1.2.1.4: Pectin -- 1.2.2: Seaweed Polysaccharide -- 1.2.2.1: Alginate -- 1.2.2.2: Carrageenans -- 1.2.2.3: Fucans -- 1.2.2.4: Ulvans -- 1.2.3: Microbial Polysaccharides -- 1.2.3.1: Pullulan -- 1.2.3.2: Xanthan gum -- 1.2.3.3: Gellan gum -- 1.2.4: Animal Polysaccharide -- 1.2.4.1: Chitin and chitosan -- 1.3 Conclusion -- Chapter 2: Pullulan: Recent Progress and Technological Prospects -- 2.1: Introduction -- 2.2: Historical Outline -- 2.3: Pullulan Biosynthesis -- 2.3.1: Mechanism of Pullulan Biosynthesis -- 2.4: Products -- 2.4.1: Antimicrobials -- 2.4.2: Enzymes -- 2.4.3: Pullulan and Other Polysaccharides -- 2.4.4: PMA -- 2.4.5: Liamocins -- 2.4.6: Siderophores -- 2.4.7: Agro-industrial Wastes -- 2.5: Disadvantages of Pullulan -- 2.6: Aromatic Features -- 2.7: Factors -- 2.8: Semi-synthetic Derivatives -- 2.8.1: Chemical Modification -- 2.8.1.1: Carboxymethyl pullulan -- 2.8.1.2: Sulfation -- 2.9: Applications -- 2.9.1: Food -- 2.9.2: Biomedicine -- 2.9.3: Water Remediation -- 2.10: Conclusion -- Chapter 3: Synthesis of Pullulan -- 3.1: Introduction -- 3.2: Synthesis of Pullulan -- 3.2.1: Role of A. pullulans in the Synthesis of Pullulan -- 3.2.2: Isolation of A. pullulans from Different Sources to Synthesize Pullulan -- 3.2.2.1: Isolation process of A. pullulans -- 3.2.3: Recovery of Pullulans -- 3.3: Factors Affecting Production of Pullulan -- 3.3.1: Influence of Concentration of Dissolved Oxygen on Production of Pullulan -- 3.3.2: Effect of pH and Pullulan Synthesis -- 3.3.3: Effect of Fermentation Time on Biosynthesis of Pullulan. , 3.3.4: Effect of Nitrogen Source on Pullulan Synthesis -- 3.4: Conclusion -- Chapter 4: Factors Affecting Pullulan Production -- 4.1: Introduction -- 4.2: Medium for Pullulan Production -- 4.3: Factors Affecting Pullulan Production -- 4.3.1: Carbon Source -- 4.3.2: Nitrogen Source -- 4.3.3: pH -- 4.3.4: Temperature -- 4.3.5: Other Factors -- 4.4: Conclusion -- Chapter 5: Pullulan: Properties and Applications -- 5.1: Introduction -- 5.2: Structure of Pullulan -- 5.3: Properties of Pullulan -- 5.3.1: Physical Properties of Pullulan -- 5.3.2: Chemical Properties of Pullulan -- 5.3.3: Biochemical Properties -- 5.4: Applications of Pullulan -- 5.4.1: Pullulan in Cosmetics -- 5.4.2: Food-Related Applications of Pullulan -- 5.4.3: Biomedical Applications of Pullulan -- 5.4.3.1: Pullulan in drug-delivery systems -- 5.4.3.2: Pullulan in gene-delivery systems -- 5.4.3.3: Pullulan in cell/tissue engineering -- 5.4.3.4: Pullulan in antibacterial release for wound-dressing applications -- 5.4.3.5: Anticancer applications of pullulan -- 5.4.3.6: Application of pullulan in bioimaging system -- 5.4.4: Environmental Applications of Pullulan -- 5.4.4.1: Environmental remediation -- 5.4.4.2: Filtration and chromatography -- 5.5: Challenges and Future Perspectives -- Chapter 6: Functional Characteristics of Pullulan: Its Physicochemical and Physiological Properties -- 6.1: Introduction -- 6.2: Physical and Chemical Properties of Pullulan -- 6.3: Biological and Physiological Properties of Pullulan -- 6.4: Biodegradable Polymers for Pullulan-Based Composite Film Preparation -- 6.5: Physicochemical Characterization of Pullulan Biofilm -- 6.5.1: Film Thickness -- 6.5.2: Film Color -- 6.5.3: Water Vapor Permeability and Water Vapor Transmission Rate -- 6.5.4: Moisture Content -- 6.5.5: Water Solubility -- 6.5.6: Mechanical Properties -- 6.5.7: Surface Morphology. , 6.5.8: Transparency -- 6.5.9: Mass Transfer Flask -- 6.5.10: Surface Topography -- 6.5.11: Oxygen Permeability -- 6.6: Conclusion -- Chapter 7: Pullulan-Degrading Enzymes and Their Biochemical Features -- 7.1: Introduction -- 7.2: Enzyme Activity of Pullulanase on Other Polysaccharides -- 7.3: Crystal Structure of Pullulanase -- 7.4: Mechanism of Glycosidic Linkage Hydrolysis -- 7.5: Enzymatic Properties of Pullulanase -- 7.6: Industrial Application of Pullulanase -- 7.7: Other Applications -- 7.8: Conclusion -- Chapter 8: Microbial Pullulan: Properties, Bioprocess Engineering, and Applications -- 8.1: Introduction -- 8.2: Properties -- 8.2.1: Physical Properties -- 8.2.1.1: Film formation -- 8.2.1.2: Structural properties -- 8.2.1.3: Molecular mass and rheological properties -- 8.2.1.4: Thermal and mechanical properties -- 8.2.2: Chemical Properties -- 8.2.3: Biochemical Properties -- 8.3: Biosynthesis of Pullulan -- 8.3.1: Factors Influencing the Production of Pullulan in Biosynthesis -- 8.3.1.1: C-source -- 8.3.1.2: N-source -- 8.3.1.3: Medium pH -- 8.3.1.4: Temperature -- 8.3.1.5: Aeration and agitation -- 8.3.2: Purification of Pullulan -- 8.4: Applications of Pullulan -- 8.4.1: Pullulan Acetate -- 8.4.2: Carboxymethyl Pullulan -- 8.4.3: Cholesterol-Bearing Pullulan -- 8.4.4: Pullulan-Polyetheramine -- 8.4.5: Polyethyleneimine Pullulan -- 8.4.6: Folate-Decorated Maleilated Pullulan -- 8.5: Conclusion and Future Prospects -- Chapter 9: Transformation of an Aureobasidium Pullulan Synthetase Gene into Saccharomyces cerevisiae -- 9.1: Introduction -- 9.2: Strains and Growth Conditions -- 9.2.1: Aureobasidium pullulans -- 9.2.2: Gamma-Irradiated Mutants and OMP Decarboxylase -- 9.3: DNA Amplification and Gel Electrophoresis -- 9.3.1: Plasmid Vectors -- 9.3.2: Novozyme DNA Transformation -- 9.3.3: B40203 Protoplast Transformation -- 9.4: Photography. , 9.5: Southern Hybridization -- 9.6: Recombinant Saccharomyces cerevisiae Strains -- 9.7: Electroporation of Saccharomyces cerevisiae -- 9.8: Reverse Transcriptase PCR -- 9.9: Pullulan Quantification -- 9.9.1: Filter Weights -- 9.9.2: Neocuproine and Pullulanase -- 9.10: Results -- 9.10.1: Pullulanase Assay -- 9.10.2: Electroporation -- 9.10.3: Filter Weights -- 9.10.4: Reverse Transcriptase PCR -- 9.10.5: Microscopy -- 9.10.6: Statistical Analysis -- 9.10.7: DNA Sequencing -- 9.11: Discussion -- 9.11.1: Pullulan Secretion -- 9.11.2: Genetic Analysis -- 9.11.3: Transformants -- 9.12: Conclusion -- Chapter 10: Role of Pullulans in Cosmetics -- 10.1: Introduction -- 10.2: Chemistry of Pullulan -- 10.3: Solubility of Pullulan -- 10.4: Different Physicochemical Characteristics of Pullulan Useful in Imparting Cosmetic Properties -- 10.5: Cosmetics Products Containing Pullulan -- 10.5.1: Antipollution Agents -- 10.5.1.1: Depolluphane as an antipollution agent -- 10.5.1.2: Depolluphane EpiPlus as an antipollution agent -- 10.5.1.3: PatcH2O™ as an antipollution agent -- 10.5.2: Antiwrinkle Agents -- 10.5.2.1: LIFTONIN®-XPRESS as an antiwrinkle agent -- 10.5.3: Antioxidant -- 10.5.4: Binders -- 10.5.5: Emulsifier -- 10.5.5.1: JD Jojoba Aqua Cream Base -- 10.5.5.2: ECOGEL™ -- 10.5.5.2: SILIGEL™ -- 10.5.6: Haircare -- 10.5.6.1: PatcH2O in haircare -- 10.5.7: Perfumes and Fragrances -- 10.6: Toxicity Profile and Safety Considerations of Pullulan -- 10.7: Future Challenges and Overcoming Strategies -- Chapter 11: Biomedical Applications of Pullulan -- 11.1: Introduction -- 11.2: Microbial Sources of Pullulan Production -- 11.3: Properties of Pullulan -- 11.3.1: Physicochemical Properties of Pullulan -- 11.3.2: Biological Properties of Pullulan -- 11.4: Biomedical Applications of Pullulan -- 11.4.1: Drug Delivery -- 11.4.2: Gene Delivery. , 11.4.3: Tissue Engineering -- 11.4.4: Vaccination -- 11.4.5: Medical Imaging -- 11.4.6: Plasma Expander -- 11.4.7: Film-Forming Agent -- 11.4.8: Molecular Chaperones -- 11.4.9: Insulinotropic Activity -- 11.5: Conclusion -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Milton :Jenny Stanford Publishing,
    Keywords: Biopolymers. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (323 pages)
    Edition: 1st ed.
    ISBN: 9780429658631
    Language: English
    Note: Cover -- Half title -- Title -- Copyrights -- Contents -- Preface -- Chapter 1. Biopolymers: Classification and Applications Arivalagan Pugazhendhi, Karuppusamy Indira, Jaya Mary Jacob, Malavika Mukesh, and Gopalakrishnan Kumar -- 1.1 Introduction -- 1.2 Classification of Biopolymers -- 1.2.1 Natural Polymers -- 1.2.1.1 Polysaccharides -- 1.2.1.2 Polyisoprenes -- 1.2.1.3 Polynucleotides -- 1.2.1.4 Polyesters -- 1.2.2 PHAs -- 1.2.2.1 Applications of PHAs -- 1.2.2.2 Blends of PHAs -- 1.2.2.3 Nanocomposites of polyhydroxyalkanoates -- 1.2.3 Proteins -- 1.2.4 Synthetic Biopolymers -- 1.2.4.1 Poly(lactic-co-glycolic acid) -- 1.2.4.2 Poly(lactic acid) -- 1.3 Applications -- 1.3.1 Medicine -- 1.3.1.1 Drug delivery systems -- 1.3.1.2 Surgical implants -- 1.3.2 Agriculture -- 1.4 Conclusion -- Chapter 2. Bio-Based Biopolymers and Their Potential Applications for Bio- and Non-Bio Sectors Muhammad Bilal and Hafiz M. N. Iqbal -- 2.1 Introduction -- 2.2 Alginate: General Properties -- 2.3 Chitosan: General Properties -- 2.4 Biopolymers and Immobilization Engineering -- 2.5 Biopolymers and Environmental Engineering -- 2.6 Biopolymers and Biomedical Engineering -- 2.6.1 Chitosan-Based Applications -- 2.6.2 Alginate-Based Applications -- 2.7 Final Remarks and Future Trends -- Chapter 3. 3D Printing of Biopolymers: Trends and Opportunities for Medical Applications Tomy J. Gutiérrez -- 3.1 Introduction -- 3.2 Brief History of 3D Printing -- 3.3 3D Materials Processing Techniques -- 3.4 Biopolymers Used for 3D Printing -- 3.5 Advantages of 3D Printing for Medical Applications -- 3.6 Current Challenges in 3D Printing of Biomaterials -- 3.6.1 Achieving Target Material Properties and Desired Architectures -- 3.6.2 Clean and Sterile Manufacturing Environments -- 3.6.3 Concerns Related to Regulatory Issues -- 3.6.4 Material-Specific Machines -- 3.6.5 Future Trends. , 3.7 Conclusion -- Chapter 4. Proteins and Their Novel Applications Tanvir Arfin, Shoeb Athar, and Stephy Rangari -- 4.1 Introduction -- 4.2 History of Protein -- 4.3 Structure of Proteins -- 4.3.1 Primary Structure -- 4.3.2 Secondary Structure -- 4.3.3 Tertiary Structure -- 4.3.4 Quaternary Structure -- 4.4 Types of Proteins -- 4.5 Synthesis of Protein -- 4.6 Cellular Functions -- 4.7 Novel Applications -- 4.7.1 Carrier Protein -- 4.7.2 Biotechnology -- 4.7.3 Engineering -- 4.7.4 Biosensors -- 4.7.5 Electrochemical Biosensors -- 4.7.6 Optical Biosensors -- 4.7.7 Bioaffinity Chromatography -- 4.7.8 Solid-Phase Extraction -- 4.7.9 Protein Biochips -- 4.7.10 Protein Nanoparticles -- 4.8 Conclusions -- Chapter 5. Chitin and Chitosan: The Defense Booster in Agricultural Field Vijayalakshmi Kumar, K. Sangeetha, P. Ajitha, S. Aisverya, S. Sashikala, and P. N. Sudha -- 5.1 Introduction -- 5.1.1 Biopolymers -- 5.1.2 Origin of Chitin and Chitosan -- 5.1.3 Modifications of Chitin and Chitosan -- 5.2 Characteristics of Chitin, Chitosan, and Derivatives -- 5.2.1 Physicochemical Properties of Chitin, Chitosan, and Their Derivatives -- 5.2.2 Biological Properties of Chitin, Chitosan, and Their Derivatives -- 5.3 Recent Research in Applications of Chitin and Chitosan in Agriculture -- 5.3.1 In Preservation of Agricultural Commodities -- 5.3.2 In Plant Resistance to Pathogens and Defense Mechanisms -- 5.3.3 In Biostimulation of Plant Growth and Its Protection -- 5.3.4 In Enhancing Food Production -- 5.3.5 In Enhancing Crop Growth -- 5.3.6 In Enhancing the Production of Plant Metabolites -- 5.4 Conclusion -- Chapter 6. Chitosan Applications in Microencapsulation Berta N. Estevinho and Fernando Rocha -- 6.1 Introduction -- 6.2 Microencapsulation -- 6.3 Microencapsulation Methods -- 6.3.1 Chemical Processes -- 6.3.1.1 Coacervation -- 6.3.1.2 Molecular inclusion. , 6.3.1.3 Co-crystallization -- 6.3.1.4 Interfacial polymerization -- 6.3.2 Mechanical Processes -- 6.3.2.1 Spray drying -- 6.3.2.2 Spray chilling -- 6.3.2.3 Extrusion -- 6.3.2.4 Fluidized bed -- 6.4 Encapsulating Agents: Biopolymers -- 6.4.1 Carbohydrates -- 6.4.2 Proteins -- 6.5 Microencapsulation with Chitosan -- 6.6 Controlled-Release Studies -- 6.7 Conclusions -- Chapter 7. Current Innovative Chitosan-Based Water Treatment of Heavy Metals: A Sustainable Approach -- 7.1 Introduction -- 7.2 Sources of Contamination -- 7.3 Chitosan -- 7.4 Heavy-Metal Pollution -- 7.5 Conventional Procedures -- 7.6 Heavy Metal Removal -- 7.6.1 Iron -- 7.6.2 Copper -- 7.6.3 Cadmium -- 7.6.4 Nickel -- 7.6.5 Chromium -- 7.6.6 Cobalt -- 7.6.7 Arsenic -- 7.6.8 Mercury -- 7.6.9 Lead -- 7.6.10 Zinc -- 7.6.11 Silver -- 7.6.12 Manganese -- 7.7 Conclusion -- Chapter 8. Bacterial Cellulose and Its Applications Th azin Han, Nitar New, and Phyu Phyu Win -- 8.1 Introduction -- 8.2 Bacterial Cellulose Production -- 8.3 Application of Bacterial Cellulose -- 8.3.1 Applications of Bacterial Cellulose in Food Sector -- 8.3.2 Applications of Bacterial Cellulose in Biomedical Sector -- 8.3.2.1 Drug delivery system -- 8.3.2.2 Bacterial cellulose scaffold for tissue engineering -- 8.3.2.3 Bacterial cellulose membrane as skin therapy -- 8.3.2.4 Bacterial cellulose as an artificial blood vessel -- 8.3.3 Applications of Bacterial Cellulose in Textile Sector -- 8.3.4 Applications of Bacterial Cellulose in Environmental Treatment Sector -- 8.3.5 Applications of Bacterial Cellulose in Paper Production Sector -- 8.3.6 Applications of Bacterial Cellulose in Biocomposite Preparation -- 8.4 Conclusions -- Chapter 9. Thermal, Mechanical and Degradation Properties of Starch-Based Bio-Nanocomposites -- 9.1 Introduction -- 9.2 Starch-Based Bio-Nanocomposites. , 9.2.1 Starch Bio-Nanocomposites Filled by Whiskers -- 9.2.2 Starch Bio-Nanocomposites Filled by Starch Nanocrystals -- 9.3 Structure and Morphology of Starch-Based Bio-Nanocomposites -- 9.4 Mechanical and Thermal Properties of Starch-Based Materials -- 9.4.1 Botanical Origin: Amylose/Amylopectin Ratio -- 9.4.2 Plasticization -- 9.4.3 Aging -- 9.4.4 Fillers -- 9.4.4.1 Cellulose nanocrystals -- 9.4.4.2 Starch nanocrystals -- 9.4.5 Mechanical Properties of Nanocomposites Based on Starch and Organic Reinforcements -- 9.4.6 Thermal Properties -- 9.5 Barrier and Biodegradation Properties -- 9.5.1 Barrier Properties -- 9.5.2 Biodegradation Properties -- 9.6 Processing and Product Development of Starch-Based Bio-Nanocomposites -- 9.6.1 Applications of Starch-Based Bio-Nanocomposites -- 9.6.1.1 Casting -- 9.6.1.2 Extrusion -- 9.6.2 Applications of Starch-Based Bio-Nanocomposites -- 9.6.2.1 Food industry -- 9.6.2.2 Agricultural industry -- 9.6.2.3 Medical field -- 9.7 Conclusion -- Chapter 10. Eggshells: From Waste to Medical Applications Stanley Chibuzor Onwubu, Shalini Singh, Anisa Vahed, and Krishnan Kanny -- 10.1 Introduction -- 10.1.1 Problems Arising from Waste Eggshells -- 10.1.2 Motivation for the Application of Eggshells -- 10.2 Overview of Eggshells Structure and Properties -- 10.3 Synthesis of Hydroxyapatite from Eggshells -- 10.4 Medical Benefit of Eggshell-Derived Hydroxyapatite -- 10.5 Eggshells as a Source of Calcium Supplement -- 10.6 Medical Application of Collagen Extracted from Eggshell Membrane -- 10.7 Summary and Recommendations -- Chapter 11. Production of Tamarind Products and Polysaccharide Maw Maw Khaing, Nang Seng Moe, Kyaw Nyein Aye, and Nitar Nwe -- 11.1 Introduction -- 11.2 The Structure of Tamarind Tree -- 11.2.1 Leaves and Flowers of Tamarind Tree -- 11.2.2 Fruits and Seeds of Tamarind Tree. , 11.2.3 Bark and Trunk of Tamarind Tree -- 11.3 Extraction of Tamarind Pulp from Tamarind Fruits -- 11.4 Using Tamarind Pulp -- 11.5 The Production of Tamarind Pulp Powder by Using Drum Dryer -- 11.6 Tamarind Jam Preparation Process -- 11.7 Production of Tamarind Paste -- 11.8 Production of Tamarind Candy -- 11.9 Preparation of Tamarind Kernel Powder -- 11.10 Extraction of Tamarind Seed Polysaccharide -- 11.11 Uses of Tamarind Seed Polysaccharide -- 11.12 Conclusion -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Polymer colloids. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (675 pages)
    Edition: 1st ed.
    ISBN: 9780323993425
    DDC: 660.2945
    Language: English
    Note: Front Cover -- Polysaccharides-based Hydrogels -- Copyright Page -- Dedication -- Contents -- List of contributors -- About the editors -- Preface -- 1 An introduction to hydrogels -- 1.1 Introduction -- 1.2 Classification of hydrogels -- 1.2.1 Classification of hydrogels based on source of origin -- 1.2.2 Classification of hydrogels based on composition -- 1.2.2.1 Homopolymeric hydrogels -- 1.2.2.2 Copolymeric hydrogels -- 1.2.2.3 Multipolymer hydrogels -- 1.3 Synthesis of hydrogels -- 1.3.1 Cross-linking method -- 1.3.1.1 Physical cross-linking method -- 1.3.1.1.1 Thermal-gelation technique -- 1.3.1.1.2 Ionic cross-linking -- 1.3.1.1.3 Guest-host chemistry -- 1.3.1.2 Chemical cross-linking methods -- 1.3.1.2.1 Photopolymerization -- 1.3.1.2.2 Enzyme-enabled cross-linking -- 1.3.1.2.3 Schiff-base reactions -- 1.3.1.2.4 Click chemistry -- 1.4 Physical and chemical properties of hydrogels -- 1.4.1 Swelling properties -- 1.4.2 Mechanical properties -- 1.4.3 Porosity and permeation -- 1.5 Conclusion -- References -- 2 Polysaccharide-based hydrogels: history and chronological developments -- 2.1 Introduction -- 2.2 Historical background -- 2.3 Historical perspective on the physical, chemical, and characterization properties of hydrogels -- 2.3.1 Porosity and permeation -- 2.4 Synthesis of hydrogels -- 2.5 Development of hydrogels -- 2.6 Trends in polysaccharide-based hydrogels -- 2.6.1 Cellulose-based hydrogels -- 2.6.2 Chitin-based hydrogels -- 2.6.3 Alginate-based hydrogels -- 2.6.4 Starch-based hydrogels -- 2.6.5 Hyaluronicacid-based hydrogels -- 2.6.6 Dextran-based hydrogels -- 2.6.7 Agar-based hydrogels -- 2.6.8 Gum-based hydrogels -- 2.7 Supramolecular gels -- 2.8 Microgels and nanogels -- 2.9 Applications of polysaccharide-based hydrogels -- 2.10 Conclusion -- References. , 3 Thermal, rheological, and mechanical properties of polysaccharide-based hydrogels -- 3.1 Introduction -- 3.2 Thermal properties of polysaccharide-based hydrogels -- 3.3 Rheological properties of polysaccharide-based hydrogels -- 3.4 Mechanical properties of polysaccharide-based hydrogels -- 3.4.1 Methods of measuring mechanical properties -- 3.4.2 Sample studies on mechanical properties of hydrogels -- 3.5 Conclusion -- References -- 4 Click chemistry a promising tool to develop polysaccharide-based hydrogels -- 4.1 Introduction -- 4.2 Conventional synthetic approaches -- 4.3 Etherification -- 4.4 Synthetic advances (new approach) -- 4.4.1 Click reaction in polysaccharide modification -- 4.4.2 Cycloaddition of alkyne-azide catalyzed by copper -- 4.4.3 Metal-free [3+2] cycloaddition -- 4.4.4 Diels-Alder reaction -- 4.4.5 Inverse electron demand Diels-Alder reaction -- 4.5 Oxime click -- 4.5.1 Thiol-Michael click reaction -- 4.5.2 Thiol-ene click reaction -- 4.6 Polysaccharide-based hydrogels using click reaction -- 4.6.1 Chitosan-based hydrogels using click reaction -- 4.6.2 Alginate-based hydrogels using click reaction -- 4.6.3 Cellulose-based hydrogels using click reaction -- 4.6.4 Starch-based hydrogels using click reaction -- 4.6.5 Dextran-based hydrogels using click reaction -- 4.7 Conclusions -- References -- 5 Polysaccharide-based conductive hydrogels -- 5.1 Introduction -- 5.2 Different types of polysaccharides -- 5.3 Polysaccharide-based conductive hydrogels -- 5.3.1 Cellulose-based conductive hydrogels -- 5.3.2 Chitosan-based conductive hydrogels -- 5.3.3 Alginate-based conductive hydrogels -- 5.3.4 Gelatin-based conductive hydrogels -- 5.3.5 Agarose-based conductive hydrogels -- 5.3.6 Dextran-based conductive hydrogels -- 5.4 Conclusions -- Acknowledgment -- References. , 6 Sophisticated techniques for characterization of polysaccharide hydrogels -- 6.1 Introduction -- 6.2 Method of preparation of hydrogels -- 6.3 Sophisticated techniques for characterization of hydrogels -- 6.3.1 Spectroscopy -- 6.3.1.1 NMR spectroscopy -- 6.3.1.2 Absorption spectroscopy -- 6.3.1.3 Raman spectroscopy -- 6.3.1.4 Circular dichroism -- 6.3.2 Diffraction -- 6.3.2.1 X-ray diffraction analysis -- 6.3.2.2 Wide-angle x-ray diffraction -- 6.3.2.3 Small-angle x-ray scattering -- 6.3.2.4 Neutron diffraction -- 6.3.2.5 Small-angle neutron scattering -- 6.3.3 Microscopy -- 6.3.3.1 Electron microscopy -- 6.3.3.2 Transmission electron microscopy -- 6.3.3.3 Scanning electron microscopy -- 6.3.3.4 Cryo-electron microscopy -- 6.3.3.5 Fluorescence microscopy -- 6.3.3.6 Super-resolution microscopy -- 6.3.3.7 Scanning probe microscopy -- 6.3.3.8 Atomic force microscopy -- 6.3.3.9 Dynamic force microscopy -- 6.3.3.10 Confocal laser scanning microscopy -- 6.4 Thermal characterization techniques -- 6.4.1 Differential scanning calorimetry -- 6.4.2 Thermal gravimetric analysis -- 6.4.3 Dynamic mechanical thermal analysis -- 6.5 Mechanical and surface characterization -- 6.5.1 Rheology -- 6.5.2 Shear-thinning and self-healing characterization -- 6.5.3 Microrheology -- 6.5.4 Other mechanical testings -- 6.5.5 Lubrication characterization -- 6.6 Computational modeling of rheological properties -- 6.7 Conclusion and future prospects -- References -- 7 Antioxidant and antimicrobial properties of polysaccharides: structure-activity relationship -- 7.1 Introduction -- 7.2 Structure and area of use of hydrogels -- 7.3 Structure of polysaccharides used in hydrogel production and their antioxidant and antibacterial characteristics -- 7.3.1 Chitin and chitosan -- 7.3.1.1 Antioxidant activity of chitosan -- 7.3.1.2 Antimicrobial effect and mechanism of chitosan. , 7.3.2 Alginate -- 7.3.3 Carrageenans -- 7.3.4 Dextran -- 7.3.5 Hyaluronic acid -- 7.3.6 Starch -- 7.3.7 Cellulose -- 7.4 Antioxidant activities of polysaccharide-based hydrogels -- 7.4.1 Antioxidant methods -- 7.4.1.1 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity -- 7.4.1.2 Hydroxyl radical scavenging activity -- 7.4.1.3 ABTS radical scavenging activity -- 7.4.1.4 Superoxide anions radical scavenging activity -- 7.4.2 Antimicrobial activity of polysaccharide-based hydrogels -- 7.5 Conclusions -- References -- 8 Functionalized polysaccharide-based hydrogels: spanking accession in tissue engineering and regenerative medicines -- 8.1 Introduction -- 8.2 Construction of polysaccharide-based hydrogels -- 8.2.1 Chemical modification of natural polysaccharides -- 8.2.2 Gelation mechanism of polysaccharide-based hydrogels -- 8.2.2.1 Physically cross-linked hydrogels -- 8.2.2.2 Chemically cross-linked hydrogels -- 8.2.2.3 Multiple cross-linking for hydrogels -- 8.3 Polysaccharide hydrogel scaffolds for tissue engineering -- 8.3.1 Regulation of foreign-body response -- 8.3.2 Promotion of tissue regeneration -- 8.3.2.1 Facilitation of cell growth and differentiation -- 8.3.2.2 Regulation of cell behavior -- 8.3.3 Bioactive ingredients delivery by polysaccharide hydrogels for tissue engineering -- 8.3.3.1 Polysaccharide hydrogels for biomacromolecules delivery -- 8.3.3.2 Polysaccharide hydrogels for engineered cell delivery -- 8.4 Conclusions, future perspectives, and challenges -- Acknowledgment(s) -- Conflict of Interest -- References -- 9 Polysaccharide-based superabsorbent hydrogels -- 9.1 Introduction -- 9.2 Preparation of polysaccharide-based superabsorbent hydrogels -- 9.2.1 Chemical cross-linking -- 9.2.2 Physical cross-linking -- 9.3 Natural polysaccharide-based superabsorbent hydrogels -- 9.3.1 Starch -- 9.3.2 Cellulose -- 9.3.3 Guar gum. , 9.3.4 Carrageenan -- 9.3.5 Chitin -- 9.3.6 Chitosan -- 9.3.7 Agar -- 9.3.8 Gum tragacanth -- 9.3.9 Gum ghatti -- 9.3.10 Gum arabic -- 9.3.11 Salecan -- 9.3.12 Xanthan gum -- 9.4 Conclusions and future perspectives -- Acknowledgment -- References -- 10 Polysaccharide-based antimicrobial hydrogels as wound dressing materials -- 10.1 Introduction -- 10.2 Wound and infection -- 10.3 Role of polysaccharides in hydrogel formation -- 10.3.1 Polysaccharide-based antimicrobial hydrogels -- 10.3.2 Polysaccharide-based hydrogels as wound dressings -- 10.3.3 Polysaccharide hydrogel-based dressing material for infected wounds -- 10.4 Polysaccharide hydrogel-based nanomaterials for infected wounds -- 10.5 Conclusion -- References -- 11 Polysaccharide-based hydrogel scaffolds for the regeneration of pancreatic beta cells to treat diabetes -- 11.1 Introduction -- 11.2 Pancreatic tissue regeneration -- 11.3 Tissue regeneration hydrogels and polymers -- 11.4 Role of hydrogels in the regeneration of pancreatic beta cells -- 11.5 Nanotechnology in beta cell regeneration -- 11.6 Conclusions -- References -- 12 Advancement in hybrid nanocomposite hydrogels and their applications -- 12.1 Introduction -- 12.2 Reinforcing materials for nanocomposite hydrogel fabrication -- 12.3 Types of hybrid nanocomposite hydrogels -- 12.3.1 Carbon-containing hybrid nanocomposite hydrogels -- 12.3.2 Polymeric nanoparticle-based hybrid nanocomposite hydrogels -- 12.3.3 Metallic nanoparticle-based hybrid nanocomposite hydrogels -- 12.3.4 Clay-based hybrid nanocomposite hydrogels -- 12.4 Methods of preparation of polysaccharide-based nanocomposite hydrogels -- 12.4.1 Instantaneous gelation method -- 12.4.2 Irradiation method -- 12.4.3 Solvent-casting method -- 12.4.4 Freeze-drying method -- 12.4.5 Extrusion method -- 12.4.6 In situ preparation method -- 12.4.7 Sol-gel method. , 12.5 Applications of polysaccharide-based nanocomposite hydrogels.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Polymers. ; Electronic books.
    Description / Table of Contents: This book presents a comprehensive and authoritative review of the recent developments and advances in biodegradable polymers and their biomedical applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (807 pages)
    Edition: 1st ed.
    ISBN: 9781003846581
    DDC: 620.19204223
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Chapter 1: Biodegradability and Biodegradable Polymers: An Overview -- 1.1: Introduction -- 1.2: Natural Polymers -- 1.2.1: Polysaccharides -- 1.2.1.1: Cellulose -- 1.2.1.2: Starch -- 1.2.1.3: Alginate -- 1.2.1.4: Hyaluronic acid -- 1.2.1.5: Chondroitin sulfate -- 1.2.1.6: Chitin and chitosan -- 1.2.2: Proteins -- 1.2.2.1: Collagen -- 1.2.2.2: Gelatin -- 1.2.2.3: Albumin -- 1.2.2.4: Fibrin -- 1.3: Synthetic Polymers -- 1.3.1: Polyesters -- 1.3.1.1: Poly(α-hydroxy acids) -- 1.3.1.2: Polylactones -- 1.3.1.3: Polyorthoesters -- 1.3.1.4: Polyphosphoesters -- 1.3.1.5: Polycarbonates -- 1.3.1.6: Poly(diol citrate) -- 1.3.2: Poly(Amino Acids) -- 1.3.3: Poly(alkylcyanoacrylates) -- 1.3.4: Block Copolymers with PEG -- 1.3.5: Polyurethanes -- 1.3.6: Polyphosphazenes -- 1.3.7: Polyanhydrides -- 1.4: Conclusion -- 1.5: Future Prospects -- Chapter 2: Standards, Policies, and Impacts of Biodegradable Polymers -- 2.1: Introduction -- 2.2: Certificationsand Standards for Biodegradable Plastics and Polymers -- 2.3: Government Policies on Registration and Use -- 2.4: Analytical Methods for Biodegradability Testing -- 2.5: Physicochemical Properties and Biodegradability -- 2.6: Regulatory Aspects for Food Packaging Materials and Products -- 2.6.1: The United States -- 2.6.2: European Union -- 2.6.3: Japan -- 2.7: The Environmental and Socioeconomic Impact -- 2.8: Findings and Conclusions -- Chapter 3: Biodegradable Polymers in Sustained and Controlled Drug Delivery -- 3.1: Introduction -- 3.1.1: Controlled Release Drug Delivery System -- 3.1.2: Sustained Release Drug Delivery System -- 3.1.2.1: Advantages of CRDDS and SRDDS -- 3.1.3: Biodegradable Polymers in Sustained and Controlled Drug Delivery -- 3.1.3.1: General polymer properties. , 3.2: Classification of Biodegradable Controlled Release Polymers -- 3.2.1: Natural Polymers -- 3.2.1.1: Protein-based polymers -- 3.2.1.2: Polysaccharide-based polymers -- 3.2.2: Synthetic Polymers -- 3.2.2.1: Poly(ester) -- 3.2.2.2: Poly(anhydrides) -- 3.2.2.3: Poly(amides) -- 3.2.2.4: Poly(orthoesters) -- 3.2.2.5: Poly(ester amides) -- 3.2.2.6: Polyphosphodiester -- 3.2.2.7: Polyphosphazenes -- 3.3: Drug Release Mechanisms for Controlled Drug Delivery -- 3.3.1: Drug Release Mechanism -- 3.3.2: Diffusion of Drugs from Side-to-Side Water-Filled Pores -- 3.3.3: Diffusion through the Polymer Matrix -- 3.3.4: Osmotic Pumping -- 3.3.5: Erosion -- 3.3.5.1: Surface erosion -- 3.3.5.2: Bulk erosion -- 3.4: Factors Influencing Polymer-Drug Release from Polymer -- 3.5: Smart (Stimuli Responsive) Biodegradable Polymers in Controlled Release -- 3.5.1: Thermo-Responsive Polymers -- 3.5.2: pH-Responsive Polymers -- 3.5.3: Dual Stimuli-Responsive Polymers -- 3.5.4: Photo-Responsive Polymers -- 3.5.5: Redox-Responsive Polymers -- 3.5.6: Bioresponsive Polymers -- 3.5.7: Hypoxia-Responsive Polymers -- 3.6: Conclusion and Future Perspectives -- Chapter 4: Role of Biodegradable Polymers in Ocular Drug Delivery -- 4.1: Introduction -- 4.1.1: Eye -- 4.1.1.1: Ocular physiological defense mechanisms for drug delivery -- 4.1.1.2: Ocular barriers -- 4.2: Conventional Drug Delivery Systems Used for Ocular Therapeutics -- 4.2.1: Conventional Drug Delivery Systems -- 4.2.1.1: Ointments -- 4.2.1.2: Eye drops -- 4.2.1.3: Intraocular implants -- 4.2.1.4: Intravitreal injections -- 4.2.1.5: Emulsions -- 4.2.1.6: Contact lenses -- 4.3: Biodegradable Polymers in Ocular Drug Delivery -- 4.3.1: Introduction -- 4.3.2: Natural Polymers -- 4.3.2.1: Polysaccharide-based polymer -- 4.3.2.2: Protein-based polymers -- 4.3.3: Synthetic Polymers -- 4.3.3.1: Aliphatic polyesters. , 4.3.3.2: Polyurethanes -- 4.3.3.3: Polyanhydrides -- 4.3.3.4: Polyphosphazenes -- 4.3.3.5: Poly(amino acids) -- 4.4: Conclusion and Future Perspectives -- Chapter 5: Biodegradable Polymers in Vaccine Delivery -- 5.1: Introduction -- 5.2: Biodegradable Polymers -- 5.2.1: Natural Biodegradable Polymer -- 5.2.1.1: Polysaccharides -- 5.2.2: Synthetic Biodegradable Polymer -- 5.2.2.1: Polyester -- 5.2.2.2: Polyanhydrides -- 5.2.2.3: Polyphosphazene -- 5.3: Methods for Vaccine and Adjuvants Delivery Systems -- 5.3.1: Microparticles -- 5.3.2: Nanoparticles -- 5.3.3: Hydrogel Capsules -- 5.3.4: Microneedles -- 5.3.5: Nanofibers -- 5.4: Conclusion -- Chapter 6: Applications of Biodegradable Polymers in Surgery -- 6.1: Introduction -- 6.1.1: Biodegradable Polymers in Surgery -- 6.1.2: Ideal Properties of BPs to Be Used in Surgery, Surgical Materials, and Device Fabrications -- 6.1.3: Degradation Mechanism of BPs -- 6.2: Classification of BPs Used in the Field of Surgery -- 6.2.1: Synthetic Biodegradable Polymers -- 6.2.1.1: Polyanhydrides -- 6.2.1.2: Poly(orthoesters) -- 6.2.1.3: Polycyanoacrylates -- 6.2.1.4: Poly(amino acids) -- 6.2.1.5: Polycaprolactone -- 6.2.1.6: PGA and PLA -- 6.2.1.7: Poly(lactide-co-glycolide) -- 6.2.1.8: Polyphosphazenes -- 6.2.2: Natural Biodegradable Polymers -- 6.2.2.1: Collagen -- 6.2.2.2: Gelatin -- 6.2.2.3: Silk -- 6.2.2.4: Alginate -- 6.2.2.5: Cellulose -- 6.2.2.6: Chitosan -- 6.2.2.7: Starch -- 6.2.2.8: Polyhydroxyalkanoates -- 6.2.2.9: Fibrin -- 6.2.2.10: Hyaluronic acid -- 6.3: Biodegradable Polymers in Clinical Trials for Surgery -- 6.4: Biodegradable Polymers-Based Surgical Devices and Materials in the Market -- 6.5: Regulatory Considerations of BPs in the Clinical Application -- 6.6: Conclusion and Prospects -- Chapter 7: Biodegradable Polymers in Wound Care and Management -- 7.1: Background -- 7.1.1: Natural Polymers. , 7.1.2: Synthetic Polymers -- 7.2: Role of Biomaterials in Wound Care and Management -- 7.3: Wound Formation and Phases -- 7.4: Natural Polymers -- 7.4.1: Hyaluronic Acid -- 7.4.2: Chitosan -- 7.4.3: Collagen -- 7.4.4: Gelatin -- 7.4.5: Silk -- 7.4.6: Zein -- 7.5: Synthetic Polymers -- 7.5.1: Polycaprolactone -- 7.5.2: Polylactic Acid -- 7.5.3: Poly(lactic-co-glycolic acid) -- 7.5.4: Polyurethanes -- 7.5.5: Polyethylene Glycol -- 7.5.6: Polyvinyl Alcohol -- 7.6: Conclusion -- 7.7: Future Perspectives -- Chapter 8: Applications of Biodegradable Polymers in Coronary Stents and Cardiac Tissue Engineering -- 8.1: Introduction -- 8.2: Biodegradable Polymers -- 8.2.1: Natural Polymers -- 8.2.2: Synthetic Polymers -- 8.3: Applications of Biodegradable Polymers -- 8.3.1: Drug-Eluting Stent Coating -- 8.3.2: Resorbable Stents Design -- 8.3.3: Tissue Engineering -- 8.3.3.1: Natural bioresorbable polymers in cardiac tissue engineering -- 8.3.3.2: Synthetic bioresorbable polymers in cardiac tissue engineering -- 8.3.4: Polymers in Vascular Scaffold -- 8.4: Constraints of Biodegradable Polymers -- 8.4.1: Polymer-Induced Smooth Muscle Cell Proliferation -- 8.4.2: Polymer-Induced Endothelial Incompetence -- 8.5: Conclusion -- 8.6: Future Perspectives -- Chapter 9: Biodegradable Polymers in Dentistry -- 9.1: Introduction -- 9.2: Biodegradable Polymers -- 9.3: Delivery Platforms in the Arena of Dentistry -- 9.4: Synthetic Biodegradable Polymers -- 9.4.1: Polylactic Acid and Polyglycolic Acid-Based Polymers -- 9.4.2: Poly-ε-caprolactone -- 9.4.3: Polyanhydrides -- 9.4.4: Polyphosphazene -- 9.5: Natural Polymers -- 9.5.1: Collagen -- 9.5.2: Fibrin -- 9.5.3: Chitosan -- 9.5.4: Hyaluronic Acid -- 9.5.5: Gelatin -- 9.5.6: Alginate -- 9.6: Combination of Various Biodegradable Polymers -- 9.7: Current Clinical Status and Future Prospects. , Chapter 10: Biodegradable Polymers in Orthopedics -- 10.1: Introduction -- 10.2: Classification of Biodegradable Polymer -- 10.2.1: Natural Biodegradable Polymer -- 10.2.1.1: Chitosan -- 10.2.1.2: Collagen -- 10.2.1.3: Hyaluronic acid -- 10.2.1.4: Alginic acid -- 10.2.2: Synthetic Biodegradable Polymer -- 10.2.2.1: Poly(glycolic acid) -- 10.2.2.2: Poly(lactic acid) -- 10.2.2.3: Poly(lactide-co-glycolic acid) -- 10.2.2.4: Poly(ϵ-caprolactone) -- 10.2.2.5: Poly(ortho esters) -- 10.2.2.6: Poly(phosphazenes) -- 10.2.2.7: Poly(anhydrides) -- 10.2.2.8: Poly(propylene fumarate) -- 10.3: Processing of Synthetic Biodegradable Polymers -- 10.4: Packaging and Sterilization of Biodegradable Polymers -- 10.5: Biocompatibility of Biodegradable Polymer -- 10.5.1: Chemical Compatibility -- 10.5.1.1: Hydrolytic degradation -- 10.5.1.2: Enzymatic degradation -- 10.5.1.3: Oxidative degradation -- 10.5.2: Mechanical Compatibility -- 10.6: Polymer Degradation -- 10.6.1: Factors Influencing Degradation of Polymer -- 10.6.1.1: The pH of the polymer -- 10.6.1.2: Copolymer composition -- 10.6.1.3: Water uptake -- 10.7: Applications of Biodegradable Polymers -- 10.7.1: Commercial Biodegradable Orthopedic Devices -- 10.7.2: Biodegradable Polymers for Controlled Release of Antibiotics -- 10.7.3: Biodegradable Polymers in Fixation of Prosthetic Joints -- 10.8: Conclusion -- Chapter 11: Biodegradable Polymer in Medical Implants and Devices -- 11.1: Introduction -- 11.2: Application of Biodegradable Polymer in Medical Implants and Devices -- 11.2.1: Sutures -- 11.2.2: Dental Devices -- 11.2.3: Orthopedic Fixation Devices -- 11.2.4: Tissue Engineering Scaffolds -- 11.2.5: Biodegradable Vascular Stents -- 11.2.6: Biodegradable Soft Tissue Anchors -- 11.3: Biodegradable Polymers Used in Medical Implants and Devices -- 11.4: Properties of Biomaterials -- 11.4.1: In Tissue Engineering. , 11.4.1.1: Biocompatibility.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Hauppauge :Nova Science Publishers, Incorporated,
    Keywords: Polymers. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (224 pages)
    Edition: 1st ed.
    ISBN: 9781536122527
    Series Statement: Polymer Science and Technology
    DDC: 547.70000000000005
    Language: English
    Note: Intro -- Contents -- Preface -- Chapter 1 -- Green Polymeric Materials: Recent Advances and Applications -- Abstract -- 1. Introduction -- 2. Chitosan as a Stabilizing Agent in Nanocomposite Formation -- 2.1. Mechanical and Barrier Property -- 2.2. Controlled Agglomeration -- 2.3. Stimuli Responsive Property (SRP) -- 2.4. Enhanced Magnetization Property -- 3. Green Synthetic Routes of Chitosan-Nanocomposites -- 3.1. Green Chemical Methods -- 3.1.1. Category A -- 3.1.2. Category B -- 3.1.3. Category C -- 3.2. Green Physical Methods -- 3.2.1. UV-Irradiation Method -- 3.2.2. Gamma-Irradiation Method -- 3.2.3. Ultrasonic-Irradiation Method -- 3.2.4. Microwave-Irradiation Method -- 4. Applications of Chitosan Nanobiocomposite Materials -- 4.1. Reduction of Nitrate Anion -- 4.2. Reduction of Bromate Anion -- 4.3. Decyanidation -- Conclusion -- References -- Chapter 2 -- Polymer Materials: From the Past to the Future -- Abstract -- 1. Introduction -- 2. General Information of Starch -- 3. Properties of Starch -- 3.1. Structure -- 3.2. Gelatinization -- 3.3. Retrogradation -- 3.4. Annealing -- 4. Thermoplastic Starch -- 5. Starch Nanocrystal -- 6. Ionic Liquid Process -- 7. Starch-Substrate Susceptibility -- 8. Classification of Starch -- 8.1. RDS -- 8.2. SDS -- 8.3. RS -- 8.3.1. RS1 -- 8.3.2. RS2 -- 8.3.3. RS3 -- 8.3.4. RS4 -- 8.3.5. RS5 -- 9. Starch Modifications -- 10. Application of Starch Based Polymer -- 10.1. Food Industry -- 10.2. Drug Delivery -- 10.3. Cancer Therapy -- 10.4. Wound Dressing -- 10.5. Tissue Engineering -- 10.6. Waste Water Treatment -- Conclusion -- References -- Chapter 3 -- Thermogravimetric Analysis of Natural Fiber Reinforced Green Polymer Composites -- Abstract -- 1. Introduction -- 2. What Are Natural Fibres - A Chemical Analysis -- 3. Thermal Gravimetric Analysis of Polymers -- 4. Understanding TG Data. , 5. Thermal Decomposition Characteristics -- 6. Degradation Behaviour of Natural Fibers -- Conclusion -- References -- Chapter 4 -- Hydrothermal Synthesis of Water Dispersible Chitosan: A Biodegradable Natural Polymer -- Abstract -- 1. Introduction -- 1.1. Uses of Chitosan -- 1.2. Chitosan Microspheres -- 1.3. Problems of Pharmaceutical uses of Chitosan -- 2. Methods -- 2.1. Materials -- 2.2. Procedure -- 2.2.1. Mechanism -- 2.2.2. TA Depolymerized CS and Its Reversible Sol-Gel Transformation with pH -- 2.3. FTIR Characterization of Water Soluble TA Depolymerized CS -- 2.3.1. FTIR Spectra of CS-TA Dialyzed Under Hot Condition -- 2.4. NMR Characterization of Water Soluble TA Depolymerized CS -- 2.5. Physical Characterization of CS-TA Particles -- Conclusion -- Acknowledgment -- References -- Chapter 5 -- Catalytic, Industrial and Environmental Perspectives of Redox Polymers -- Abstract -- 1. Introduction -- 1.1. Non-Conducting Polymers (Insulators) -- 1.2. Conducting Polymers (CPs) -- 1.3. Doping -- 1.4. Mechanism of Conductivity -- 1.5. Applications -- 2. Redox Polymers: Fundamental Aspects -- 2.1. Historical Background -- 2.2. Types of Redox Polymers -- 2.2.1. Redox Polymers Having Electroactive Inorganic Redox Groups -- 2.2.2. Redox Polymers Having Electroactive Organic Redox Groups -- 2.3. Mechanism of Charge Transfer (Conductivity) in Redox Polymers -- 2.4. Characterization Techniques -- 2.5. Applications of Redox Polymers -- 3. Catalytic Perspective of Redox Polymers -- 4. Industrial Perspectives of Redox Polymers -- 5. Environmental Perspectives of Redox Polymers -- Conclusion -- Acknowledgments -- References -- Chapter 6 -- Biodegradable Polymers for Industrial Applications -- Abstract -- 1. Introduction -- 2. What Are Biodegradable Polymers? -- 2.1. Different Types of Biodegradable Polymers. , 2.2. Polyesters Produced by Microorganisms -- 2.2.1. Polyhydroxyalkanoates (PHA) -- 2.2.2. Polyhydroxyl butyrate (PHB) -- 2.2.3. Polyhydroxybutyrate-Cohydroxyvalerates (PHBV) -- 2.2.4. Polyhydroxybutyrate-Co-Hydroxyhexanoates (PHBHx) -- 2.3. Agropolymers -- 2.3.1. Starch -- 2.4. Synthetic Polymers -- 2.4.1. Polylactic Acid (PLA) -- 2.5. Factors Affecting Biodegradation of Polymers -- 3. Industrial Applications of Biodegradable Polymers -- 3.1. Application in Food Packaging Material -- 3.2. Application in Automotive Industry -- 3.3. Application in Textile Industry -- 3.4. Use in Biodegradable Orthopaedic Implants -- 3.5. Application in Tissue Engineering -- 3.6. Biodegradable Polymers in Drug Delivery -- 4. Market Trends -- 4.1. Regional Trends -- Conclusion -- Acknowledgments -- Conflict of interests -- References -- Chapter 7 -- The Characteristics and Structure Properties of Starches after Graft Copolymerized Modification -- Abstract -- 1. Introduction -- 2. Properties of Starch -- 3. Chemical Modification of Starch -- 3.1. Starch Graft Copolymerization -- 4. Methods -- 4.1. Sample Preparation -- 4.2. Graft Yield -- 4.3. Moisture Absorption -- 4.4. Fourier Transform Infrared Spectroscopy (FTIR) -- 4.5. Scanning Electron Microscopy (SEM) -- 5. The Characteristics of Starch after Modification -- 5.1. Graft Yield -- 5.2. Moisture Absorption -- 5.3. Fourier Transform Infrared Spectroscopy (FTIR) -- 6. The Structure Properties of Grafted Copolymerized Starch -- 6.1. Scanning Electron Microscopy (SEM) -- Conclusion -- Acknowledgment -- References -- Chapter 8 -- Biodegradable Superabsorbent Polymers in Agriculture -- Abstract -- 1. Introduction -- 2. Biodegradable Superabsorbent Polymers -- 3. Natural Cellulose Reservoirs -- 3.1. Banana Pseudo Stem -- 3.2. Wheat Straw -- 3.3. Maize Bran -- 3.4. Flax Yarn Waste. , 3.5. Oil Palm Empty Fruit Bunches (OPEFB) -- 4. Characterization Methods for Sap -- 4.1. Swelling Capacity -- 4.2. Elastic Modulus -- 4.3. Particle Size Distribution -- 4.4. Bulk Density and Flow-Ability -- 4.5. Sensitivity to pH -- 4.6. Swelling Rate -- 4.7. Absorbency under Load (AUL) -- 5. Ideal Super Absorbent Material -- Conclusion -- References -- Chapter 9 -- Mechanical Properties of Kenaf Fiber Reinforced Thermoplastic Composites: A Recent Study -- Abstract -- 1. Introduction -- 2. Classification of Natural Fibers -- 3. Kenaf Fiber: An Introduction -- 4. Mechanical Properties of Kenaf Fibre Reinforced Thermoplastic Composites -- Conclusion -- References -- About the Editors -- List of Contributors -- Index -- Blank Page.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...