GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Geologische Rundschau 86 (1997), S. S258 
    ISSN: 0016-7835
    Keywords: Key words U ; Pb zircon ; Meta-gabbros ; KTB ; Bohemian massif ; Cambro-Ordovician
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Among the large number of gabbroic intrusions within the profile of the continental deep drilling (KTB), several types can be distinguished. In this study petrographic, geochemical investigations, conventional U–Pb zircon data and results of Sr–Nd–Pb isotope characteristics of meta-gabbros, amphibolites and felsic rocks are reported. The main results are: U–Pb zircon age data reveal a magmatic Cambro-Ordovician evolution of the Erbendorf-Vohenstrauss zone (ZEV). The range of the ages of magmatic intrusions varies from 496 to 476 Ma, probably as a result of overlap of magmatic and metamorphic processes. Cambro-Ordovician magmatic ages were observed within different mafic (b unit) as well as in variegated units (v unit) of the KTB profile. The Silurian-Devonian metamorphism is dated at around 398 Ma. The Silurian as well as the Variscan metamorphic events apparently did not influence the U–Pb system. The Cambro-Ordovician mafic rocks from the KTB scatter on a ɛ-Nd evolution diagram. Several meta-gabbros cluster around the ɛ-NdT- 500 value of +5, but others vary from +8.6 to +0.65 and suggest variable degrees of contamination with continental crust material. A contamination of only 5–10% is required to reduce ɛ-Nd from +8.6 to approximately +5. According to the REE patterns and the Sr–Nd–Pb data, the mafic rocks could either derive from an enriched mantle source or else their protolith magma originated from a depleted mantle and was contaminated by continental crust. The data for the mafic rocks of the ZEV are in accord with observation by other authors regarding the evolution of the Late-Proterozoic to Early Palaeozoic magmatism in the Bohemian massif.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Precise U–Pb geochronology, Hf isotope compositions and trace element distributions in zircons are combined in the present study to define the timing and sources of the magmatism forming the Medet porphyry copper deposit, Bulgaria. ID-TIMS U–Pb-zircon dating demonstrates that ore-bearing magmatism extended for less than 1.12 Ma. As inferred from the field relationships, it started with the intrusion of a quartz-monzodiorite at 90.59 ± 0.29 Ma followed by granodiorite porphyries at 90.47 ± 0.30 and 90.27 ± 0.60 Ma and by crosscutting aplite dykes at 90.12 ± 0.36 Ma. These units were overprinted by potassic alteration and host economic copper-(Mo–Au) mineralization. The main magmatic–hydrothermal activity ceased after that, and a later quartz-granodiorite porphyry dyke, dated at 89.26 ± 0.32 Ma, only contains an uneconomic quartz–pyrite mineralization. Assimilation of Lower Paleozoic rocks with a mantle to mantle–crust signature is characteristic of the fertile magma in the Medet deposit, as defined by positive ɛ-Hf values of the inherited zircons. The positive Ce-anomalies and the higher Eu/Eu* ratios of the zircons in the mineralized Cretaceous rocks of Medet deposit argue for crystallization from a generally more oxidized magma compared to the later quartz-granodiorite porphyry dyke. A change in paleostress conditions occurred during the intrusion of the Medet pluton and its dykes. The initial stage reveals E–W extension associated with N–S compression, whereas the younger granodiorite dyke was emplaced during subsequent N–S extension. The large-scale switch of the extensional stress regime during the mineralization was favourable for ore deposition by channelling the fluids and increasing the effective permeability.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-09-12
    Description: Precise U–Pb geochronology and Hf isotope tracing of zircon is combined with whole-rock geochemical and Sr and Nd isotope data in order to unravel processes affecting mafic to felsic calcalkaline magmas prior to and during their crystallization in crustal magma chambers along the southern border of Central Srednogorie tectonic zone in Bulgaria (SE Europe). ID-TIMS U–Pb dating of single zircons from felsic and mixed/mingled dioritic to gabbroic horizons of single plutons define crystallization ages of around 86.5–86.0, 85.0–84.5 and 82 Ma. Concordia age uncertainties are generally less than 0.3 Ma (0.35%–2σ), and as good as 0.08 Ma (0.1%), when the weighted mean 206Pb/238U value is used. Such precision allows the distinction of magma replenishment processes if separated by more than 0.6–1.0 Ma and when they are marked by newly saturated zircons. We interpret zircon dates from a single sample that do not overlap to reflect new zircon growth during magma recharge in a long-lived crustal chamber. Mingling/mixing of the basaltic magma with colder granitoid mush at mid- to upper-crustal levels is proposed to explain zircon saturation and fast crystallization of U- and REE-rich zircons in the hybrid gabbro. Major and trace-element distribution and Sr and Nd whole-rock isotope chemistry define island arc affinities for the studied plutons. Slab derived fluids and a sediment component are constrained as enrichment sources for the mantle wedge-derived magma, though Hf isotopes in zircon suggest crustal assimilation was also important. Inherited zircons, and their corresponding ε-Hf, from the hybrid gabbroic rocks trace the lower crust as possible source for enrichment of the mantle magma. These inherited zircons are about 440 Ma old with ε-Hf of − 7 at 82 Ma, whereas newly saturated concordant Upper Cretaceous zircons reveal mantle ε-Hf values of + 7.2 to + 10.1. The upper and middle crusts contribute in the generation of the granitoid rocks. Their zircon inheritance is Lower Palaeozoic or significantly older and crustal dominated with 82–85 Ma corrected ε-Hf values of − 28. The Cretaceous concordant zircons in the granitoids are mantle dominated with a ε-Hf values spreading from + 3.9 to + 7.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Geological Society
    In:  In: The Timing and Location of Major Ore Deposits in an Evolving Orogen. , ed. by Blundell, D. J., Neubauer, F. and von Quadt, A. Geological Society Special Publications, 204 . Geological Society, London, pp. 119-135. ISBN 1-86239-122-X
    Publication Date: 2018-01-09
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-02-13
    Description: New age and whole-rock 87 Sr/ 86 Sr and 143 Nd/ 144 Nd isotopic data are used to assess petrogenetic and regional geodynamic processes associated with Late Cretaceous subvolcanic intrusions within the sparsely studied Timok Magmatic Complex (TMC) and Ridanj–Krepoljin Zone (RKZ) of eastern Serbia. The TMC and RKZ form part of the Apuseni–Banat–Timok–Srednogorie (ABTS) magmatic belt, a Cu–Au mineralized calc-alkaline magmatic arc related to closure of the Tethys Ocean that extends through Romania, Serbia, and Bulgaria in SE Europe. Zircon ages based on U–Pb laser ablation inductively coupled plasma mass spectrometry supplemented by existing isotope dilution thermal ionization mass spectrometry data respectively range from 89 to 79 Ma and from 76 to 71 Ma for the TMC and RKZ. This age pattern corresponds to cross-arc younging away from the European continent. Adakite-like trace element signatures (Y ≤18 ppm) are linked with samples that extend across the arc. These overlap in space and time with samples that conform to a normal arc differentiation trend. We performed energy-constrained assimilation–fractional crystallization (EC-AFC) modeling of Sr–La–Nd–Yb concentrations and Sr and Nd isotopic data. Results suggest that the two distinct fractionation trends may be explained in terms of a common mantle-derived parental magma but distinct fractionation and assimilation paths in the lower and upper crust. Petrogenesis of the adakite-like magmas is consistent with extensive high-pressure amphibole fractionation in the lower crust followed by ascent and plagioclase-dominant fractionation and assimilation in the upper crust. In contrast, normal arc signatures appear to have evolved exclusively via an upper-crustal differentiation process. Overall, our interpretation supports mantle wedge melting related to weak extension during progressive rollback of a subducting slab.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-06-09
    Description: Bridging the gap between the plutonic and volcanic realms is essential for understanding a variety of magmatic processes from caldera-forming eruptions to the formation of magmatic-hydrothermal ore deposits. Porphyry copper deposits are commonly associated with large and long-lived volcanic centers, but the temporal and dynamic link between mineralized intrusions and volcanic eruptions has remained controversial. Based on the combination of (1) high-precision zircon U-Pb geochronology and trace element geochemistry with (2) plagioclase textures, we discovered an intimate connection between an ignimbrite eruption and a nearby world-class porphyry deposit (Bajo de la Alumbrera in the late Miocene Farallón Negro Volcanic Complex of Argentina). Our results indicate that the magmatic-hydrothermal deposit and explosive volcanism were derived from a common magma reservoir that evolved over a minimum duration of 217 ± 25 k.y. before the final eruption. We show that the volcanic pile represents the inverted magma reservoir, recording systematic differences in plagioclase textures and juvenile clast content from bottom to top. This tight temporal and geochemical link suggests that deposit formation and volcanic eruption were both triggered by the same injection of a volatile-saturated primitive magma into the base of the magma chamber. A time gap of 19 ± 12 k.y. between porphyry mineralization and the onset of explosive volcanism indicates a minimum duration of magma reservoir rejuvenation that led to the explosive eruptive event. Catastrophic loss of volatiles by explosive volcanism terminated the ore-forming capacity of the upper-crustal magma chamber, as evidenced by the intrusion of a syn-eruptive barren quartz-feldspar porphyry. Our results demonstrate that porphyry copper deposits provide critical information to understand how volatiles control the fate of hydrous magmas between pluton formation and explosive volcanism.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-01
    Description: A multidisciplinary provenance study, including sandstone framework, heavy mineral analysis, in situ U-Pb dating of detrital zircon, and Hf isotopic ratio analysis of dated zircons, was undertaken on Late Cretaceous–Miocene deep-marine turbiditic and deltaic sandstones of Makran accretionary wedge, SE Iran, to determine their sedimentary provenance and tectonic setting. Sandstone framework modes reveal both magmatic arc rocks as a source of Late Cretaceous–Oligocene detritus and recycling of Miocene sandstones. Heavy mineral assemblages, Cr-spinel, and blue amphibole indicate ophiolite and high-pressure–low-temperature metamorphic rocks (blueschists) as a supplementary provenance. In total, 2931 laser-ablation–inductively coupled plasma–mass spectrometry (ICP-MS) U-Pb detrital zircon ages on 21 sandstone samples yielded three major age peaks at ca. 167 Ma, 88.7 Ma, and 48.9 Ma. Also, 241 in situ Hf isotope analyses of dated zircons provide evidence for dominantly igneous source rocks. Two main detrital zircon ages are identified: (1) abundant Middle Jurassic grains with Hf isotopic compositions of continental crust, suggesting a rifting-related magmatic provenance; and (2) Late Cretaceous–Eocene grains with Hf isotopic compositions of continental crust and nondepleted mantle, suggesting a continental magmatic arc provenance. This change in provenance is attributed to the Late Cretaceous convergence between Arabia and Eurasia.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-03
    Description: The late Alpine evolution of the Rhodope Massif in southern Bulgaria and northern Greece involved postcollisional extension, which generated detachment faults, syndeformational sedimentary basins, and exhumation of a large metamorphic core complex composed of gneisses and marbles: the Central Rhodopian dome. Closely associated with this complex, subvolcanic rhyolite dikes and extrusive rocks were emplaced, shortly followed by major swarms of epithermal to mesothermal Pb-Zn veins and carbonate replacement orebodies. High-precision geochronology using complementary Ar-Ar, Rb-Sr, and U-Pb dating methods resolves how this process of tectonic denudation from deep crustal metamorphism to near-surface epithermal ore formation occurred within a period of about 12 m.y. After an early Alpine phase of accretion, eclogite-facies metamorphism, and orogenic nappe stacking, the late Alpine postcollisional evolution of the Central Rhodopian dome started with the intrusion of granitic bodies at about 42 to 41 Ma, probably marking the beginning of extension and core complex formation. The early stages of extension were characterized by normal faulting, rotation of fault blocks, and thinning that caused cooling of the hanging wall through ~300°C at about 40 to 38 Ma, as dated by Rb-Sr and Ar-Ar geochronology of metamorphic biotite. The main extensional phase occurred between 38 and 36 Ma and led to horizontal displacements of tens of kilometers in the hanging wall. In the footwall, high metamorphic temperatures and decompression persisted and resulted in partial melting and the formation of migmatites at 37 Ma and vuggy pegmatites at about 36 Ma. Cooling of the footwall below ~300°C occurred between 36 and 34 Ma, followed by emplacement of undeformed rhyolite porphyry dikes and the extrusion of volcanic products deposited onto the surface-exposed center of the dome at about 33 to 30 Ma. The hydrothermal ores were formed ca. 30.5 Ma in the south and ca. 29.3 Ma in the northern part of the dome during the last major event of focused heating to 270° to 330°C of near-surface rocks by hydrothermal fluid advection. Ore formation and localized, later fluid processes caused disturbance and younging of some Rb-Sr ages in the footwall of the dome. Field and geochronologic constraints indicate that the formation of the Pb-Zn deposits (~31–29 Ma) is up to 2 m.y. younger than the local rhyolitic magmatism, which is volumetrically minor in the mineralized core complex. This contrasts with ore formation related to calc-alkaline magmatism in the Eastern Rhodopes, where polymetallic Cu-Au-Ag-Pb-Zn mineralization was found to be coeval with the latest phases of igneous activity (~32 Ma). The chemically simpler but considerably larger metamorphic-hosted Pb-Zn deposits of the Central Rhodopian dome were generated by large-scale hydrothermal fluid circulation, driven by the high heat flow attending core complex formation, exhumation, and final fracturing of a rapidly thinned crust.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-05-17
    Description: We report results from mineralogical, geochemical and isotopic analyses of the three youngest pyroclastic products (ca. 86 ky) belonging to the Sabatini Volcanic District (Roman Province, central Italy). By means of thermometers, hygrometers and oxygen barometers, we have estimated that the crystallization temperature of magma progressively decreases over time (910–740 °C),whereas the amount ofwater dissolved in the melt and fO2 progressively increases as compositions of magmas become more differentiated (4.5–6.4 wt.% H2O and 0.4–2.6 ΔQFM buffer, respectively). Thermodynamic simulations of phase equilibria indicate that geochemical trends in mafic magmas (MgO N 4 wt.%) can be reproduced by abundant fractionation of olivine and clinopyroxene (~50 wt.% crystallization), while the trends of more evolved magmas (MgO ≤ 4 wt.%) originated by fractional crystallization of plagioclase and sanidine (~45 wt.% crystallization). The behavior of trace elements highlights that magmatic differentiation is controlled by polybaric differentiation that includes: (1) prolonged fractionation of mafic, anhydrous minerals from a primitive, H2O-poor magma at depth and (2) extraction of a more evolved, H2O-rich magma that crystallizes abundant felsic and subordinated hydrous minerals at shallow crustal levels. Assimilation and fractional crystallization modeling also reveal that magmas interacted with the carbonate rocks of the subvolcanic basement. The effect of carbonate assimilation accounts for both trace element and Sr–Nd isotopic variations inmagmas, suggesting amaximumdegree of carbonate assimilation of less than 5 wt.%.
    Description: Published
    Description: 28-38
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Description: open
    Keywords: Sabatini Volcanic District ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...