GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Schwimmbad ; Badewasser ; Wasseraufbereitung ; Desinfektionsmittel ; Nebenprodukt
    Type of Medium: Online Resource
    Pages: Online-Ressource (52 S., 874 KB) , graph. Darst
    Language: German
    Note: Förderkennzeichen BMBF 02 WT 0001/9. - Verbund-Nr. 01016419. - Literaturverz. - Engl. Titel: Swimming pool water under aspects of health and treatment technology, part 1: minimization of disinfection by-products under aspects of chemistry and water treatment technology , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Auch als gedr. Ausg. vorhanden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht ; Schwimmbad ; Badewasser ; Desinfektion ; Risikoanalyse
    Type of Medium: Online Resource
    Pages: Online-Ressource (66 S., 1,38 MB) , graph. Darst.
    Language: German
    Note: Verbund-Nr. 01038407. - Engl. Zsfassung u.d.T.: Integrated risk assessment for the new generation of disinfection By-Products , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Auch als gedr. Ausg. vorhanden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Forschungsbericht ; Wasseraufbereitung ; Schwimmbad
    Type of Medium: Online Resource
    Pages: Online-Ressource (77 S., 3,97 MB) , graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 02WT1090. - Verbund-Nr. 01076180 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-18
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Temperature and soil moisture are known to control pesticide mineralization. Half‐life times (DT〈sub〉50〈/sub〉) derived from pesticide mineralization curves generally indicate longer residence times at low soil temperature and moisture but do not consider potential changes in the microbial allocation of pesticide‐derived carbon (C). We aimed to determine carbon use efficiency (CUE, formation of new biomass relative to total C uptake) to better understand microbial utilization of pesticide‐derived C under different environmental conditions and to support the conventional description of degradation dynamics based on mineralization. We performed a microcosm experiment at two MCPA (2‐methyl‐4‐chlorophenoxyacetic acid) concentrations (1 and 20 mg kg〈sup〉−1〈/sup〉) and defined 20°C/pF 1.8 as optimal and 10°C/pF 3.5 as limiting environmental conditions. After 4 weeks, 70% of the initially applied MCPA was mineralized under optimal conditions but MCPA mineralization reached less than 25% under limiting conditions. However, under limiting conditions, an increase in CUE was observed, indicating a shift towards anabolic utilization of MCPA‐derived C. In this case, increased C assimilation implied C storage or the formation of precursor compounds to support resistance mechanisms, rather than actual growth since we did not find an increase in the 〈italic toggle="no"〉tfdA〈/italic〉 gene relevant to MCPA degradation. We were able to confirm the assumption that under limiting conditions, C assimilation increases relative to mineralization and that C redistribution, may serve as an explanation for the difference between mineralization and MCPA dissipation‐derived degradation dynamics. In addition, by introducing CUE to the temperature‐ and moisture‐dependent degradation of pesticides, we can capture the underlying microbial constraints and adaptive mechanisms to changing environmental conditions.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Changing environmental conditions alter the MCPA degradation dynamics and the allocation of pesticide‐derived carbon to anabolic or catabolic metabolism.〈boxed-text position="anchor" content-type="graphic" id="ejss13417-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:13510754:media:ejss13417:ejss13417-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Collaborative Research Center 1253 CAMPOS (DFG)
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: DFG Priority Program 2322 “Soil System”
    Description: Ellrichshausen Foundation
    Description: Research Training Group “Integrated Hydrosystem modeling”
    Description: https://doi.org/10.5281/zenodo.5081655
    Keywords: ddc:631.4 ; anabolism ; carbon use efficiency ; catabolism ; effect of soil moisture and temperature ; gene‐centric process model ; MCPA biodegradation
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Journal of High Resolution Chromatography 23 (2000), S. 474-478 
    ISSN: 0935-6304
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: ---Solid-phase extraction, on-line derivatization, and measurement by ion trap mass spectrometry (ITD-MS) were used to investigate the biological degradation of pharmaceutical residues (clofibric acid, ibuprofen, diclofenac). The results of the single steps of sample pretreatment and analytical determination are reported. MS/MS measurements were performed on an ITD-MS by selecting collision induced dissociation of the molecular ions (M+) as parent ions to defined daughter ions. A pilot sewage plant and biofilm reactors operating under oxic and anoxic conditions were run as model systems with synthetic sewage water containing 10 to 50 mg/L dissolved organic carbon (DOC) and pharmaceuticals in concentrations of 10 μg/L. Clofibric acid displayed its persistent character in all cases. The pilot sewage plant and the oxic biofilm reactor showed comparable results for diclofenac and ibuprofen, which both were partly degraded. These results can explain the occurrence of these substances in sewage effluents and in the aquatic environment. A high degree of degradation was found especially for ibuprofen in the oxic biofilm reactor, which was attributed to adaptation of the biofilm to the residue. Two metabolites of ibuprofen could be identified on the basis of their mass spectra and comparison with literature data, viz. hydroxyibuprofen and carboxyibuprofen.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 36 (1997), S. 2250-2250 
    ISSN: 0570-0833
    Keywords: Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-07-05
    Description: Organic micropollutants of anthropogenic origin in river waters may impair aquatic ecosystem health and drinking water quality. To evaluate micropollutant fate and turnover on a catchment scale, information on input source characteristics as well as spatial and temporal variability is required. The influence of tributaries from agricultural and urban areas and the input of wastewater were investigated by grab and Lagrangian sampling under base flow conditions within a 7.7‐km‐long stretch of the Ammer River (southwest Germany) using target screening for 83 organic micropollutants and 4 in vitro bioassays with environmentally relevant modes of action. In total, 9 pesticides and transformation products, 13 pharmaceuticals, and 6 industrial and household chemicals were detected. Further, aryl hydrocarbon receptor induction, peroxisome proliferator–activated receptor activity, estrogenicity, and oxidative stress response were measured in the river. The vast majority of the compounds and mixture effects were introduced by the effluent of a wastewater‐treatment plant, which contributed 50% of the total flow rate of the river on the sampling day. The tributaries contributed little to the overall load of organic micropollutants and mixture effects because of their relatively low discharge but showed a different chemical and toxicological pattern from the Ammer River, though a comparison to effect‐based trigger values pointed toward unacceptable surface water quality in the main stem and in some of the tributaries. Chemical analysis and in vitro bioassays covered different windows of analyte properties but reflected the same picture. Environ Toxicol Chem 2020;39:1382–1391. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: 551.9 ; Chemical analysis ; Bioassays ; Catchment scale ; Micropollutant mixtures ; Lagrangian sampling
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-07-05
    Description: Storm events lead to agricultural and urban runoff, to mobilization of contaminated particulate matter, and to input from combined sewer overflows into rivers. We conducted time‐resolved sampling during a storm event at the Ammer River, southwest Germany, which is representative of small river systems in densely populated areas with a temperate climate. Suspended particulate matter (SPM) and water from 2 sampling sites were separately analyzed by a multi‐analyte liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for 97 environmentally relevant organic micropollutants and with 2 in vitro bioassays. Oxidative stress response (AREc32) may become activated by various stressors covering a broad range of physicochemical properties and induction of aryl hydrocarbon receptor–chemical‐activated luciferase gene expression (AhR‐CALUX) by hydrophobic compounds such as dioxins and dioxin‐like molecules. Compound numbers, concentrations, their mass fluxes, and associated effect fluxes increased substantially during the storm event. Micropollutants detected in water and on SPM pointed toward inputs from combined sewer overflow (e.g., caffeine, paracetamol), urban runoff (e.g., mecoprop, terbutryn), and agricultural areas (e.g., azoxystrobin, bentazone). Particle‐facilitated transport of triphenylphosphate and tris(1‐chloro‐2‐propyl) phosphate accounted for up to 34 and 33% of the total mass flux even though SPM concentrations were 〈1 g L–1. Effect fluxes attributed to SPM were similar or higher than in the water phase. The important role of SPM‐bound transport emphasizes the need to consider not only concentrations but also mass and effect fluxes for surface water quality assessment and wastewater/stormwater treatment options. Environ Toxicol Chem 2021;40:88–99. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: 551 ; Storm event ; Organic micropollutants ; Chemical analysis ; In vitro bioassays ; Water quality
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-27
    Description: Understanding groundwater–surface water (GW–SW) interactions is vital for water management in karstic catchments due to its impact on water quality. The objective of this study was to evaluate and compare the applicability of seven environmental tracers to quantify and localize groundwater exfiltration into a small, human‐impacted karstic river system. Tracers were selected based on their emission source to the surface water either as (a) dissolved, predominantly geogenic compounds (radon‐222, sulphate and electrical conductivity) or (b) anthropogenic compounds (predominantly) originating from wastewater treatment plant (WWTP) effluents (carbamazepine, tramadol, sodium, chloride). Two contrasting sampling approaches were compared (a) assuming steady‐state flow conditions and (b) considering the travel time of the water parcels (Lagrangian sampling) through the catchment to account for diurnal changes in inflow from the WWTP. Spatial variability of the concentrations of all tracers indicated sections of preferential groundwater inflow. Lagrangian sampling techniques seem highly relevant for capturing dynamic concentration patterns of WWTP‐derived compounds. Quantification of GW inflow with the finite element model FINIFLUX, based on observed in‐stream Rn activities led to plausible fluxes along the investigated river reaches (0.265 m3 s−1), while observations of other natural or anthropogenic environmental tracers produced less plausible water fluxes. Important point sources of groundwater exfiltration can be ascribed to locations where the river crosses geological fault lines. This indicates that commonly applied concepts describing groundwater–surface water interactions assuming diffuse flow in porous media are difficult to transfer to karstic river systems whereas concepts from fractured aquifers may be more applicable. In general, this study helps selecting the best suited hydrological tracer for GW exfiltration and leads to a better understanding of processes controlling groundwater inflow into karstic river systems.
    Description: Karst aquifers represent an increased complexity when aiming to measure the interaction between groundwater and river water. Combining field‐based measurements on catchment scale and modelling, the applicability of ‘classical’ environmental groundwater tracers was compared to selected organic (micro)pollutants often considered as conservative and originally arising from a wastewater treatment plant. This study demonstrates that the choice of an appropriate tracer is crucial when either aiming to quantify groundwater exfiltration into karstic river systems, or indicating hydrological processes, applying (globally) omnipresent pollutants.
    Description: German Research Foundation (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: 551.46 ; carbamazepine ; groundwater inflow ; Lagrangian sampling ; radon ; wastewater treatment plant ; water quality
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...