GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Allergy 26 (1971), S. 0 
    ISSN: 1398-9995
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 46 (1990), S. 787-791 
    ISSN: 1420-9071
    Keywords: Nuclear waste ; microbial effects ; cement ; marl ; ion exchange resins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Current projects for the disposal of low-and intermediate-level radioactive waste in Switzerland are based on the concept of a horizontally accessed repository under a hillside. Most of the waste to be disposed of in such a repository is operational and decommissioning waste from nuclear power plants and wastes from medicine, industry and research. This waste is generally solidified in cement and placed in steel drums or concrete containers. Once the by the anaerobic corrosion of steel and by microbial degradation of organic material, to escape from the near field. Valanginian marl, which is one of three envisaged options for the host rock, is characterized by a high carbonate content, up to 75% in some locations. The organic content of the marl is between 1% and 2%, while pyrite is present in concentrations up to 5%. The groundwater is reducing, and its pH tends to lie in the neutral to slightly alkaline range. Potentially important microbial effects on the long-term performance of the system are microbial degradation of barrier materials and organics, the effect of microorganisms on sorption, and their role as catalysts.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: The tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-06
    Description: The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-14
    Description: Atmospheric CO2 (c(a)) rise changes the physiology and possibly growth of tropical trees, but these effects are likely modified by climate. Such c(a) x climate interactions importantly drive CO2 fertilization effects of tropical forests predicted by global vegetation models, but have not been tested empirically. Here we use tree-ring analyses to quantify how c(a) rise has shifted the sensitivity of tree stem growth to annual fluctuations in rainfall and temperature. We hypothesized that c(a) rise reduces drought sensitivity and increases temperature sensitivity of growth, by reducing transpiration and increasing leaf temperature. These responses were expected for cooler sites. At warmer sites, c(a) rise may cause leaf temperatures to frequently exceed the optimum for photosynthesis, and thus induce increased drought sensitivity and stronger negative effects of temperature. We tested these hypotheses using measurements of 5,318 annual rings from 129 trees of the widely distributed (sub-)tropical tree species, Toona ciliata. We studied growth responses during 1950-2014, a period during which c(a) rose by 28%. Tree-ring data were obtained from two cooler (mean annual temperature: 20.5-20.7 degrees C) and two warmer (23.5-24.8 degrees C) sites. We tested c(a) x climate interactions, using mixed-effect models of ring-width measurements. Our statistical models revealed several significant and robust c(a) x climate interactions. At cooler sites (and seasons), c(a) x climate interactions showed good agreement with hypothesized growth responses of reduced drought sensitivity and increased temperature sensitivity. At warmer sites, drought sensitivity increased with increasing c(a), as predicted, and hot years caused stronger growth reduction at high c(a). Overall, c(a) rise has significantly modified sensitivity of Toona stem growth to climatic variation, but these changes depended on mean climate. Our study suggests that effects of c(a) rise on tropical tree growth may be more complex and less stimulatory than commonly assumed and require a better representation in global vegetation models.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-04
    Description: Interannual variability in the global land carbon sink is strongly related to variations in tropical temperature and rainfall. This association suggests an important role for moisture-driven fluctuations in tropical vegetation productivity, but empirical evidence to quantify the responsible ecological processes is missing. Such evidence can be obtained from tree-ring data that quantify variability in a major vegetation productivity component: woody biomass growth. Here we compile a pantropical tree-ring network to show that annual woody biomass growth increases primarily with dry-season precipitation and decreases with dry-season maximum temperature. The strength of these dry-season climate responses varies among sites, as reflected in four robust and distinct climate response groups of tropical tree growth derived from clustering. Using cluster and regression analyses, we find that dry-season climate responses are amplified in regions that are drier, hotter and more climatically variable. These amplification patterns suggest that projected global warming will probably aggravate drought-induced declines in annual tropical vegetation productivity. Our study reveals a previously underappreciated role of dry-season climate variability in driving the dynamics of tropical vegetation productivity and consequently in influencing the land carbon sink.
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...