GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: We present a new 3-D shear-velocity model for the top 30 km of the crust in the wider Vienna Basin region based on surface waves extracted from ambient-noise cross-correlations. We use continuous seismic records of 63 broad-band stations of the AlpArray project to retrieve interstation Green’s functions from ambient-noise cross-correlations in the period range from 5 to 25 s. From these Green’s functions, we measure Rayleigh group traveltimes, utilizing all four components of the cross-correlation tensor, which are associated with Rayleigh waves (ZZ, RR, RZ and ZR), to exploit multiple measurements per station pair. A set of selection criteria is applied to ensure that we use high-quality recordings of fundamental Rayleigh modes. We regionalize the interstation group velocities in a 5 km × 5 km grid with an average path density of ∼20 paths per cell. From the resulting group-velocity maps, we extract local 1-D dispersion curves for each cell and invert all cells independently to retrieve the crustal shear-velocity structure of the study area. The resulting model provides a previously unachieved lateral resolution of seismic velocities in the region of ∼15 km. As major features, we image the Vienna Basin and Little Hungarian Plain as low-velocity anomalies, and the Bohemian Massif with high velocities. The edges of these features are marked with prominent velocity contrasts correlated with faults, such as the Alpine Front and Vienna Basin transfer fault system. The observed structures correlate well with surface geology, gravitational anomalies and the few known crystalline basement depths from boreholes. For depths larger than those reached by boreholes, the new model allows new insight into the complex structure of the Vienna Basin and surrounding areas, including deep low-velocity zones, which we image with previously unachieved detail. This model may be used in the future to interpret the deeper structures and tectonic evolution of the wider Vienna Basin region, evaluate natural resources, model wave propagation and improve earthquake locations, among others.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-12
    Description: The Antarctic and Greenland ice sheets will play a major role for global sea level rise in the decades and centuries to come. Antarctic climate and mass balance have been highlighted by the Intergovernmental Panel on Climate Change (IPCC) as key sources of uncertainty when predicting the future climate system and sea level, and that significant challenges remain in understanding and representing the dynamics of the Antarctic ice sheets. At the same time, the ice sheets are a unique archive of the paleo atmosphere. The European project “Beyond EPICA” started to retrieve an ice core going back 1.5 Ma, into the Mid-Pleistocene Transition (MPT). Both aspects, correctly estimating future sea-level contributions and deciphering the paleo-climate archive, rely on decrypting the physical processes that control ice-sheet evolution over time. In this seminar, I will present the USIAS project “Characterising ice-sheet properties and processes with novel seismic monitoring technology”, with which we establish new methodologies to be employed during the “Beyond EPICA” drilling to improve our knowledge of ice-sheet properties and dynamics. Apart from methodological advances, I will also put the work into the context of the global climate warming - which already became a climate crisis - and point out possible futures for our planet.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-01
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: In this study, we show results from ambient noise tomography around the KTB (Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland), a continental deep drilling site located at the western edge of the Bohemian Massif, within the Variscan belt of Europe. At the KTB site, crustal rocks have been drilled down to 9 km depth. Before the drilling activity started, several active seismic surveys had been performed to explore its surroundings during the 1980s and early 1990s, in the frame of an extensive exploration of the area aimed at unravelling the characteristics of the continental lower crust that is exposed at surface in this location. Despite the exploration campaigns held at and around the KTB drilling site, there are important targets that are worth further investigation; these are related in particular to the obduction of lower crustal units to the surface, and to the mechanism of orogenic processes in general. Here we present a new 3-D shear wave velocity model of the area from cross-correlations of ambient seismic noise. The model is obtained by a unique data set composed of 2 yr of continuous data recorded at nine 3-component temporary stations (installed from July 2012 to July 2014) located on top and around the drilling site, and together with the data from 19 permanent stations throughout the region. This paper is focusing on the upper crustal layers, and we show velocity variations at short scales that correlate well with known geological structures in the region of the KTB site, at the surface and at depth. These are used to discuss features that are less well-resolved at present.
    Description: Published
    Description: 982–995
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Seismological Society of America (SSA)
    In:  EPIC3The Seismic Record, Seismological Society of America (SSA), 3(2), pp. 125-133, ISSN: 2694-4006
    Publication Date: 2024-03-14
    Description: We present distributed fiber-optic sensing data from an airplane landing near the EastGRIP ice core drilling site on the Northeast Greenland Ice Stream. The recordings of exceptional clarity contain at least 15 easily visible wave propagation modes corresponding to various Rayleigh, pseudoacoustic, and leaky waves. In the frequency range from 8 to 55 Hz, seven of the modes can be identified unambiguously. Based on an a priori firn and ice model that matches P-wave dispersion and the fundamental Rayleigh mode, a Backus–Gilbert inversion yields an S-wavespeed model with resolution lengths as low as a few meters and uncertainties in the range of only 10 m/s. An empirical scaling from S wavespeed to density leads to a depth estimate of the firn–ice transition between 65 and 71 m, in agreement with direct firn core measurements. This work underlines the potential of distributed fiber-optic sensing combined with strong unconventional seismic sources in studies of firn and ice properties, which are critical ingredients of ice core cli-matology, as well as ice sheet dynamics and mass balance calculations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Oxford University Press (OUP)
    In:  EPIC3Geophysical Journal International, Oxford University Press (OUP), 235(3), pp. 2430-2441, ISSN: 0956-540X
    Publication Date: 2024-03-14
    Description: Ice streams are major contributors to ice sheet mass loss and sea level rise. Effects of their dynamic behaviour are imprinted into seismic properties, such as wave speeds and anisotropy. Here, we present results from a distributed acoustic sensing (DAS) experiment in a deep ice-core borehole in the onset region of the Northeast Greenland Ice Stream, with focus on phenomenological and methodological aspects. A series of active seismic surface sources produced clear recordings of the P and S wavefield, including internal reflections, along a 1500 m long fibre-optic cable that was placed into the borehole. The combination of nonlinear traveltime tomography with a firn model constrained by multimode surface wave data, allows us to invert for P and S wave speeds with depth-dependent uncertainties on the order of only 10 m s-1, and vertical resolution of 20-70 m. The wave speed model in conjunction with the regularly spaced DAS data enable a straightforward separation of internal upward reflections followed by a reverse-Time migration that provides a detailed reflectivity image of the ice. While the differences between P and S wave speeds hint at anisotropy related to crystal orientation fabric, the reflectivity image seems to carry a pronounced climatic imprint caused by rapid variations in grain size. Further improvements in resolution do not seem to be limited by the DAS channel spacing. Instead, the maximum frequency of body waves below ∼200 Hz, low signal-To-noise ratio caused by poor coupling, and systematic errors produced by the ray approximation, appear to be the leading-order issues. Among these, only the latter has a simple existing solution in the form of full-waveform inversion. Improving signal bandwidth and quality, however, will likely require a significantly larger effort in terms of both sensing equipment and logistics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-29
    Description: We use cross-correlations of ambient seismic noise data between pairs of 9 broadband three component seismometers to investigate variations in velocity structure and anisotropy in the vicinity of the EastGRIP camp along and across flow of the Northeast Greenland Ice Stream (NEGIS). From the 9-component correlation tensors associated with all station pairs we derive dispersion curves of Rayleigh and Love wave group velocities between station pairs at frequencies from 1 to 25 Hz. The distributions of the Rayleigh and Love group velocities exhibit anisotropy variations for the along and across flow component. To better assess those variations, we invert the dispersions curves to shear wave velocities in the horizontal (Vsh) and vertical (Vsv) direction for the top 300 m of the NEGIS using a Markov Chain Monte Carlo approach. The reconstructed 1-D shear velocity model revels radial anisotropy in the NEGIS. Along and across flow vertical shear wave velocities (Vsv) identify comparable velocity profiles for all depths. However, horizontal shear wave velocities (Vsh) are faster by approximately 250 m/s in the along flow direction below a depth of 100 m, i.e. below the firn-ice transition. This type of anisotropy seems to arise from the alignment of a crystallographic preferred orientation, due to deformation associated with shear zones. The role of anisotropy as e.g. created by air bubbles in the firn and ice matrix, is yet unclear. Faster Vsh velocities in the along flow direction support that the NEGIS has crystal orientation alignment normal to the plane of shear compression (i.e. ice crystals orientated across flow) within the upper 300 m of the ice stream and are in alignment with the results from other methods. We demonstrate that simple, short duration (2-3 weeks), passive seismic deployment and environmental noise-based analysis can be used to determine the anisotropy of the upper part of ice masses.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...