GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-02
    Description: The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.
    Keywords: Comment; DERIDGE; Event label; From Mantle to Ocean: Energy-, Material- and Life-cycles at Spreading Axes; Hydrogen; Hydrogen concentration; Hydrogen consumption rate; Hydrogen consumption rate per weight; M68/1; M68/1-20-ROV; M68/1-24-ROV; M68/1-39-ROV; M68/1-70-ROV; MARSUED3; Meteor (1986); Remote operated vehicle; ROV; Sample ID; Time in minutes; Tissue piece, number of; Wet mass
    Type: Dataset
    Format: text/tab-separated-values, 1582 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Petersen, Jillian M; Zielinski, Frank U; Pape, Thomas; Seifert, Richard; Moraru, Cristina; Amann, Rudolf; Hourdez, Stéphane; Girguis, Peter R; Wankel, Scott D; Barbe, Valerie; Pelletier, Eric; Fink, Dennis; Borowski, Christian; Bach, Wolfgang; Dubilier, Nicole (2011): Hydrogen is an energy source for hydrothermal vent symbioses. Nature, 476, 176-180, https://doi.org/10.1038/nature10325
    Publication Date: 2024-04-13
    Description: The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.
    Keywords: DERIDGE; From Mantle to Ocean: Energy-, Material- and Life-cycles at Spreading Axes; HYDROMAR2; M64/2; M64/2-244-ROV; M64/2-263-ROV; M64/2-266-ROV; M64/2-281-ROV; M68/1; M68/1-20-ROV; M68/1-24-ROV; M68/1-39-ROV; M68/1-70-ROV; MARSUED3; Meteor (1986); Mid-Atlantic Ridge at 10-15°N; Remote operated vehicle; ROV
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-13
    Description: The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.
    Keywords: Comment; DERIDGE; Event label; From Mantle to Ocean: Energy-, Material- and Life-cycles at Spreading Axes; Hydrogen; Hydrogen concentration; Hydrogen consumption rate; Hydrogen consumption rate per weight; HYDROMAR2; M64/2; M64/2-244-ROV; M64/2-263-ROV; M64/2-266-ROV; M64/2-281-ROV; Meteor (1986); Mid-Atlantic Ridge at 10-15°N; Remote operated vehicle; ROV; Sample ID; Time in minutes; Wet mass
    Type: Dataset
    Format: text/tab-separated-values, 986 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...