GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Laser pulses, Ultrashort. ; Electronic books.
    Description / Table of Contents: This book provides a comprehensive introduction to ultrafast phenomena, covering the fundamentals of ultrafast spin and charge dynamics, key methods, and applications in physics, chemistry, and materials science. The authors explain in clear language how an ultrafast laser pulse can induce rapid responses in electrons and spins in solids and nanostructured materials. They also show how this field is driving the next generation of magnetic storage devices and ultrafast intense light sources, incorporating numerous examples and problems throughout.
    Type of Medium: Online Resource
    Pages: 1 online resource (320 pages)
    Edition: 1st ed.
    ISBN: 9781498764292
    DDC: 621.366
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents in Brief -- Table of Contents -- Setting the Stage and Modus Operandi: "The Making of the Book" -- Preface -- Authors -- I Fundamentals -- 1 Time scales -- 1.1 Units of time and relation between energy and time -- 1.2 Time axis -- 1.3 How to describe events in space-time coordinates -- 1.4 Time scale in the hydrogen atom -- 1.5 Time scale for photoisomerization -- 1.6 Summary -- 1.7 Exercises -- 2 Ultrafast phenomena: Experimental -- 2.1 Introduction to the laser and how it works -- 2.1.1 Standing waves -- 2.1.2 Cavity -- 2.1.3 Stimulated emission and single wavelength selection -- 2.2 Short summary of nonlinear optics under cw laser excitation -- 2.3 Magneto-optics -- 2.4 Development of ultrafast lasers: Major breakthrough with the Ti-Sapphire laser -- 2.4.1 Phase alignment and mode-locking -- 2.4.2 Necessity of many modes and broad bandwidth -- 2.4.3 Emergence of ultrafast pulses from mode-locking -- 2.5 How to access the ultrafast time scale -- 2.6 Time-resolved pump-probe experiments -- 2.6.1 Basic principles -- 2.6.2 Nitty-gritties and theory behind the processes -- 2.7 Photoisomerization in bacteriorhodopsin -- 2.8 Femtochemistry -- 2.9 Metals, semiconductors and superconductors -- 2.10 Femtomagnetism -- 2.11 High-order harmonic generation and attosecond physics -- 2.12 Exercises -- 3 Theoretical background -- 3.1 Density functional theory -- 3.1.1 Hohenberg-Kohn theorem -- 3.1.2 Kohn-Sham equation -- 3.2 Time-dependent density functional theory -- 3.2.1 Solving the Kohn-Sham equation -- 3.2.2 Example: Many-electron atoms -- 3.2.3 Adiabatic approximation -- 3.2.4 Example: TDDFT of atoms in a linearly-polarized field -- 3.3 Quantum chemistry tools -- 3.3.1 Basis functions -- 3.3.2 Hartree-Fock approximation -- 3.3.3 Configuration interaction method. , 3.3.4 Coupled-cluster method -- 3.4 Solid state physics: Essentials -- 3.4.1 Crystal structure = Bravais lattice + basis -- 3.4.2 Band structure: How electronic energy disperses with crystal momentum -- 3.5 Two special features in ultrafast dynamics -- 3.5.1 Spin-orbit coupling -- 3.5.2 Interaction between laser radiation and matter -- 3.5.3 Further notes on the vector potential -- 3.6 Rotation matrices for spins -- 3.7 Software packages -- 3.8 Exercises -- II Applications -- 4 High-harmonic generation -- 4.1 Brief history and key features of high-harmonic generation -- 4.2 Working principles of HHG -- 4.2.1 Laser electric field strength and Coulomb potential in an atom -- 4.2.2 Escaping the Coulomb potential -- 4.2.3 Ponderomotive energy -- 4.2.4 Corkum's theory: Origin of the cutoff energy of Ip + 3.17Up -- 4.3 Applications -- 4.3.1 Applications to hydrogen and neon atoms -- 4.3.2 Applications to C60 -- 4.3.2.1 Model -- 4.3.2.2 Time-dependent Liouville equation -- 4.3.2.3 Power spectrum -- 4.4 Experimental demonstration of high-harmonic generation in C60 -- 4.5 High-harmonic generation in solids -- 4.5.1 Graphene -- 4.5.2 Going to magnets -- 4.5.3 Simple picture of HHG in solids -- 4.6 Exercises -- 5 Femtomagnetism -- 5.1 History of femtomagnetism -- 5.2 Magnetic materials -- 5.2.1 General properties -- 5.2.2 Element ferromagnets and microscopic interactions -- 5.3 Time scale of laser-induced demagnetization -- 5.3.1 Time scale for electron response -- 5.3.2 Time scale for spin response -- 5.3.3 Time scale of phonon excitation -- 5.3.4 Demagnetization time -- 5.4 Sample experimental results -- 5.4.1 Fe, Ni and permalloy -- 5.4.2 Half-metallic and Heusler compounds -- 5.4.3 Short experimental summary -- 5.5 Mechanisms still under debate -- 5.5.1 Spin-orbit coupling model -- 5.5.2 Hubbard model -- 5.5.3 Heisenberg model. , 5.5.4 Time-dependent Liouville density functional theory -- 5.5.5 Time-dependent magneto-optics theory -- 5.6 Exercises -- 6 All-optical spin switching -- 6.1 Basic optics -- 6.2 Background -- 6.2.1 Ferrimagnets and magneto-optical recording -- 6.2.2 Experimental discovery -- 6.3 Key ingredients of all-optical spin switching -- 6.3.1 Composition and compensation temperature -- 6.3.2 Laser parameters -- 6.3.3 New materials -- 6.4 Theory -- 6.4.1 Birth of the first single spin switching model -- 6.4.2 Numerical solutions and MatLab codes -- 6.4.3 Reversing millions of spins -- 6.4.4 Importance of spin moments -- 6.5 Exercises -- 7 Spin manipulations in magnetic nanostructures -- 7.1 Computer memory and magnetic storage -- 7.1.1 Giant magneto-resistance -- 7.1.2 Magneto-optical recording technology -- 7.1.3 Emergence of ultrafast demagnetization -- 7.2 Experimental discovery -- 7.2.1 Experiments in permalloy -- 7.2.2 Coherent spin manipulation in NiO -- 7.3 Spin precession -- 7.4 Rabi oscillation -- 7.5 Spin-orbit coupling in an atom -- 7.6 Magnetic resonance in NiO clusters -- 7.7 Exercises -- 8 Magnetic molecules and magnetic logic -- 8.1 Λ processes in molecular systems -- 8.1.1 Degenerate case -- 8.1.2 Chirped lasers -- 8.1.3 Spectral broadening of the laser pulse -- 8.2 A closer look into electronic correlations -- 8.2.1 Correlations and interatomic distances -- 8.2.2 Correlations and ultrafast spin dynamics -- 8.3 Molecular vibrations -- 8.3.1 Electron-vibron coupling -- 8.3.2 Molecular vibrations and spin dynamics -- 8.3.3 Geometry change as a tool: Mechanical strain -- 8.4 Magnetic logic on molecules -- 8.4.1 How many magnetic centers do we need? -- 8.4.2 The Ni3Na2 paradigm -- 8.4.3 Elementary laser-induced processes -- 8.4.4 Spin transferability -- 8.4.5 Mapping quantum dynamics onto classical trajectories -- 8.4.6 Higher multiplicities. , 8.4.7 More complicated M and nonlinear M processes -- 8.5 First steps towards magnetic logic gates -- 8.5.1 Boolean logic on Ni3Na2: NAND gate -- 8.5.2 ERASE functionality -- 8.5.2.1 Laser chirp -- 8.5.2.2 Quantum interferences -- 8.5.3 Charge-spin gearbox -- 8.6 Concluding remarks -- 8.7 Exercises -- Appendix A Appendices -- A.1 KLI approximation -- A.2 LDA: local density approximation -- A.3 Self-interaction corrected LDA -- A.4 BLYP approximation -- A.5 Electric dipole, magnetic-dipole and other higher-order interactions -- A.6 Code to generate ultrafast pulses -- A.7 Code to generate figures in HHG -- A.8 Code to compute the cutoff energy in HHG -- A.9 Code to compute the C60 structure -- A.10 Genetic algorithm example -- A.11 Special crystal momentum points and lines -- Bibliography -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-20
    Description: Nature Protocols 9, 112 (2014). doi:10.1038/nprot.2013.173 Authors: Shi-Jie Yuan, Wen-Wei Li, Yuan-Yuan Cheng, Hui He, Jie-Jie Chen, Zhong-Hua Tong, Zhi-Qi Lin, Feng Zhang, Guo-Ping Sheng & Han-Qing Yu Electrochemically active bacteria (EAB) have the ability to transfer electrons to electron acceptors located outside the cell, and they are widely present in diverse environments. In spite of their important roles in geochemical cycles, environmental remediation and electricity generation, so far, only a limited number
    Print ISSN: 1754-2189
    Electronic ISSN: 1750-2799
    Topics: Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...