GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The results for the corrosion of alumina single crystals at 1700-2000°C in argon, argon/water vapor, air, and air/water vapor for 10 h are reported. There were no obvious weight and volume changes after corrosion. White spots were observed on the surfaces of the specimens after corrosion tests. The initial temperature for the appearance of these white spots was 1800°C for argon and air, 1900°C for argon/water vapor, and 2000°C for air/water vapor. These white spots were likely formed by internal impurities, which diffused outward to the surface and coalesced at high temperatures. There was no evidence of corrosion damage inside the specimens. The flexural strength of the specimens was clearly enhanced after the corrosion tests and showed no evident relation to the corrosion conditions. This increase in strength after corrosion was likely due to the healing of surface machining flaws. The surface flaw healing temperature for alumina crystals was higher than 1400°C.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A high-temperature multilayer composite (MLC) with hot hard layers and superplastic layers was proposed in this communication. The hard layer can provide the MLC high-temperature strength; the superplastic layer can deform plastically at high temperatures, disperse the applied stress, and stop the crack from advancing. Such an MLC was prepared via tape casting in the Al2O3/MoSi2+Mo2B5 system in the present work; in this system, Al2O3 was the hard layer and MoSi2+Mo2B5 was the superplastic layer. The microstructures and the stress-displacement behaviors of the MLCs were investigated. Finally, the design rules for the high-temperature MLCs were discussed briefly.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...