GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Meteorology and atmospheric physics 35 (1984), S. 81-92 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Description / Table of Contents: Zusammenfassung Aufgrund einer früher vorgenommenen regionalen Einteilung [39] wurden die Niederschlagsvariationen in Sri Lanka für die einzelnen Regionen mit Spektralanalyse und Filterungsmethoden unter Verwendung von Beobachtungsdaten aus der Periode 1881–1980 untersucht. Die 3- bis 4jährige Periodizität wurde auf der ganzen Insel festgestellt; aber andere Zyklen unterscheiden sich von Region zu Region. Eine 13- bis 16monatige Oszillation zeigt sich in den Regionen A, D und E, die ungefähr der Feuchtzone und der Trockenzone entsprechen. 10- bis 2jährige Oszillationen treten in den Regionen A, B und C auf, wo der Südwestmonsun die Fluktuationsformen beherrscht. Im besonderen wurde festgestellt, daß die quasi-zweijährige Oszillation nicht nur in Sri Lanka, sondern auch in anderen Ländern niedriger Breiten vorkommt. Eine quasifünfjährige Oszillation wurde in den Regionen D und E festgestellt, wo der Nordostmonsun die Fluktuationsformen beeinflußt. Unregelmäßigkeiten in der Amplitude und in Phasenänderungen wurden in ihrer längerperiodischen Fluktuation festgestellt.
    Notes: Summary Based on the regional division of another paper [39], the rainfall variations of Sri Lanka have been investigated for the respective regions by power spectrum analysis and filtering methods, making use of data for the period from 1881 to 1980. The 3–4 year periodicity was observed over the entire island, but other cycles differ from region to region. The 13–16 months oscillation arises in Regions A, D and E, which roughly correspond to the Wet Zone and Dry Zone. The 10 and 2 year oscillations emerge in Regions A, B and C, where the southwest monsoon dominates the fluctuation patterns. In particular, it was confirmed that the quasi-biennial oscillation is not only in Sri Lanka, but also in other low latitude countries. The quasi-five year oscillation is noticed in Regions D and E, where the northeast monsoon influences on the fluctuation patterns. Irregularities in amplitude and in phase changes were noticed in their longer period fluctuation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Meteorology and atmospheric physics 34 (1984), S. 329-340 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Description / Table of Contents: Zusammenfassung Zur Untersuchung der räumlichen und zeitlichen Verteilungsmuster des Niederschlags in Sri Lanka werden Monatswerte von 29 Stationen aus der Periode 1881–1980 analysiert. Die Methode der Hauptkomponentenanalyse wurde auf monatliche Niederschlags-anomalien angewendet. Der erste Eigenvektor zu 40,8% und der zweite Eigenvektor zu 11,1% der totalen Varianz erklaren die am wahrscheinlichsten existierenden Muster mit orographischen Einflüssen. Im besonderen ist ersterer durch Niederschlagsmuster in der Periode zwischen Oktober und Februar (NE-Monsun) erklärt und letzterer durch die in der Periode Mai bis September (SW-Monsun). Die Spektralanal ysen der Zeitkoeffizienten des ersten Eigenvektors weisen Zyklen von 40, 24 and 14–15 Monaten auf, während die des zweiten Eigenvektors 120 and 40 Monate anzeigen. Schließlich wird, basiert auf die ersten zwei Eigenvektoren, eine regionale Einteilung von Niederschlagsfluktuationen für Sri Lanka vorgelegt.
    Notes: Summary In order to study the spatial and temporal patterns in Sri Lanka, monthly rainfall data at 29 stations for the period 1881–1980 were analysed in this study. First, Empirical Orthogonal Function analysis method was applied for the monthly rainfall anomalies. The result indicated clear dominant spatial patterns. The first eigenvector accounts for 40.2% and the second for 11.1% of the total variance explain the most apparently existing patterns with orographic influences. In particular, the former is explained by the rainfall patterns in the period between October and February (northeast monsoon), and the later by that in May to September (southwest monsoon) period. Power spectra of first eigenvector's time coefficients revealed cycles at 40, 24 and 14–15 months, while the second eigenvector's time coefficients indicated at 120 and 40 months. Lastly, a regional division by rainfall fluctuations is presented for Sri Lanka based on the space coefficients of first two eigenvectors.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    GeoJournal 7 (1983), S. 70-71 
    ISSN: 1572-9893
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    GeoJournal 7 (1983), S. 568-569 
    ISSN: 1572-9893
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    GeoJournal 8 (1984), S. 235-250 
    ISSN: 1572-9893
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography
    Notes: Abstract This paper reviews results of recent observations on the thermal belt, cold air drainage and cold air lake, which are striking in local climatic phenomena in mountain areas. The height (A) of the warmer part, the thermal belt, of the mountain slopes changes with time from early evening, midnight to early morning and also seasonally and differs according to the velocity of the upper general wind and cloudiness, but is generalized by the height difference (H) between the bottom of the basin and the surrounding mountain ridges. Roughly speaking, A = (0.25–0.30) H. On the mountain slopes, cold air flows down intermittently. The air temperature shows positive correlation to the wind speed of cold air drainage in the source region of cold air drainage. On the other hand, however, there is a negative correlation between the wind speed and air temperature in the drainage region at the lower part of the slope. Above the downslope cold air drainage, there is an anti-down-slope wind. The relatively large drainages are formed at frequencies corresponding to periods of oscillation of 1–2 hours and the smaller ones are of several minutes. In the basin or valley bottom, cold air lakes are formed. They are well defined by a strong inversion in air temperature. In most cases, the stagnant air in the cold air lake flows down slowly in accordance with inclination of the basin or valley floor. Above the cold air lake, we find the neutral or weak inversion layer. In some periods the drained cold air flows into this layer from the side slopes of the mountains. However, the radiation cooling of the basin or valley floor seems to be more effective for the formation of the cold air lake. Above the neutral or weak inversion layer, there is a layer of the general wind caused by the synoptic scale circulation systems. Their effects are controlled by the surrounding topography as well as the basin or the valley itself. In short, the structure of thermal belt, cold air drainage and cold air lake is a good example of the small-scale climatic processes under the influence of the synoptic scale phenomena and the one-order-greater scale topography.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    GeoJournal 3 (1979), S. 115-116 
    ISSN: 1572-9893
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-9893
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1572-9893
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    GeoJournal 4 (1980), S. 161-172 
    ISSN: 1572-9893
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography
    Notes: Abstract In order to subdivide the natural regions of Japan, first, the regional subdivisions or distributions of geology, landforms, soils, climates, hydrology, flora, forests and vegetations are shown separately. The characteristics of the subdivided regions or zones are described briefly to illustrate the distribution of every element in Japan. Secondly, a tentative division of natural regions of Japan is given in reference to the subdivisions or distributions mentioned in the first part. The numbers of the natural regions of Japan tentatively proposed in this paper are 7 in the 1. order, 20 in the 2. order and 58 in the 3. order. The average area of the 3. order regions in Kyûshû, Shikoku, Honshû and Hokkaidô is about 8,100 km2, which implies a meso-scale dimension. The names of the regions in the 2. order are: I1) Nansei Islands, I2) Daitôjima, II1) Ogasawara Islands and others, II2) Minamitorishima (Marcus Is.), III1) Pacific coast (Nankai), III2) Mountain area of SW Japan, III3) NW Kyûshû, III4) Inland Sea region, III5) Pacific side of Central Japan, IV1) Izu Islands, IV2) Kanto-tosan, IV3) Pacific side of NE of Honshu, V1) San'in district, V2) NW of Central Japan, VI1) NE of Central Japan and S of N Honshû, VI2) Japan Sea side of N Honshû, VI3) SW Hokkaidô, VII1) Pacific side of Hokkaidô, VII2) E of Hokkaidô, and VII3) W of Hokkaidô.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    GeoJournal 4 (1980), S. 161-172 
    ISSN: 1572-9893
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography
    Notes: Abstract In order to subdivide the natural regions of Japan, first, the regional subdivisions or distributions of geology, landforms, soils, climates, hydrology, flora, forests and vegetations are shown separately. The characteristics of the subdivided regions or zones are described briefly to illustrate the distribution of every element in Japan. Secondly, a tentative division of natural regions of Japan is given in reference to the subdivisions or distributions mentioned in the first part. The numbers of the natural regions of Japan tentatively proposed in this paper are 7 in the 1. order, 20 in the 2. order and 58 in the 3. order. The average area of the 3. order regions in Kyûshû, Shikoku, Honshû and Hokkaidô is about 8,100 km2, which implies a meso-scale dimension. The names of the regions in the 2. order are: I1) Nansei Islands, I2) Daitôjima, II1) Ogasawara Islands and others, II2) Minamitorishima (Marcus Is.), III1) Pacific coast (Nankai), III2) Mountain area of SW Japan, III3) NW Kyûshû, III4) Inland Sea region, III5) Pacific side of Central Japan, IV1) Izu Islands, IV2) Kanto-tosan, IV3) Pacific side of NE of Honshu, V1) San'in district, V2) NW of Central Japan, VI1) NE of Central Japan and S of N Honshû, VI2) Japan Sea side of N Honshû, VI3) SW Hokkaidô, VII1) Pacific side of Hokkaidô, VII2) E of Hokkaidô, and VII3) W of Hokkaidô.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...