GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Arzneimittelentwicklung ; Antibiotikum
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (31 Seiten, 12,01 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 16GW0104K , Verbundnummer 01159901 , Paralleltitel dem englischen Berichtsblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Sprache der Zusammenfassung: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht ; Tetracycline ; Naturstoffchemie
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (25 Seiten, 772 KB)
    Language: German
    Note: Förderkennzeichen BMBF 16GW0094K. - Verbund-Nummer 01157006 , Literaturverzeichnis: Seite 18-21 , Paralleltitel dem englischen Berichtsblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Actinobacteria. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (398 pages)
    Edition: 1st ed.
    ISBN: 9783319603391
    DDC: 628.5
    Language: English
    Note: Intro -- Preface -- Contents -- 1: Introduction -- 2: The Cellular Structure of Actinobacteria -- 2.1 Diversity of Cell Morphology in Actinobacteria -- 2.1.1 Mycelium -- 2.1.2 Resistant Form of the Cells -- 2.2 Cell Envelope -- 2.2.1 Plasma Membrane -- 2.2.2 Cell Wall -- 2.2.3 Surface Layer and Capsule -- 2.3 Cytoplasm -- 2.3.1 Cytoskeleton -- 2.3.2 Inclusion Bodies -- 2.3.3 Bacterial Microcompartments (BMCs) -- 2.4 Other Cellular Structures -- 2.4.1 Vesicles -- 2.4.2 Flagella and Pili -- References -- 3: Growth and Life Cycle of Actinobacteria -- 3.1 Life Cycle of Actinobacteria -- 3.2 Differentiation in Actinobacteria -- 3.2.1 Aerial Growth -- 3.2.2 Developmental Regulators -- 3.2.3 Sporulation -- 3.2.3.1 Sporulation-Specific Cell Division -- 3.2.3.2 Chromosome Segregation -- 3.2.3.3 Spore Maturation -- 3.2.3.4 Control of Streptomyces Sporulation -- 3.2.3.5 Spore Germination -- 3.2.3.6 Streptomyces Programmed Cell Death -- 3.2.4 Cell Division -- 3.2.5 Vegetative Septation -- 3.2.5.1 Reproductive Septation -- 3.2.5.2 Cell Division in Nonfilamentous Actinobacteria -- 3.3 Factors Affecting Growth and Differentiation in Actinobacteria -- References -- 4: Classification and Taxonomy of Actinobacteria -- 4.1 Current Status in Actinobacterial Taxonomy -- 4.2 Classic and Recent Criteria in Taxonomical Classification of Actinobacteria -- 4.3 Phenetic Classification -- 4.3.1 Microscopic and Macroscopic Morphology -- 4.4 Physiological/Metabolic Characteristics -- 4.4.1 Nutritional Requirements -- 4.4.2 Growth Conditions -- 4.4.2.1 Temperature -- 4.4.2.2 pH -- 4.4.2.3 NaCl Tolerance -- 4.4.3 Antibiotic Sensitivity -- 4.4.4 Enzymatic Activity and Degradation Activity -- 4.5 Molecular Classification -- 4.5.1 16S rRNA Gene Sequence -- 4.5.2 Alternative Genes for Phylogenetic Analysis of Actinobacteria. , 4.5.3 DNA-DNA Hybridization and ANI Value -- 4.5.4 Whole Genome Sequencing -- 4.5.5 Phylogeny of Actinobacteria Based on Whole Genome Analysis -- 4.5.6 Molecular Typing -- 4.5.6.1 Pulsed-Field gel Electrophoresis (PFGE) -- 4.5.6.2 Multilocus Sequence Typing (MLST) -- 4.5.6.3 Random Amplified Polymorphism Deoxyribonucleic Acid (RAPD) -- 4.5.6.4 Ribotyping -- 4.5.6.5 MALDI-TOF Mass Spectrometry -- 4.6 Chemical Classification -- 4.6.1 Cell Wall Chemical Composition -- 4.6.2 Cell Membrane Isoprenoid Quinones -- 4.6.3 Cell Membrane Phospholipids -- 4.6.4 Cell Membrane Fatty Acid Pattern -- 4.6.5 Cell Membrane Mycolic Acid Type -- References -- 5: The Genetic System of Actinobacteria -- 5.1 Introduction -- 5.2 Sequencing Technologies to Determine the Genetics of Actinobacteria and the General Features of Their Genomes -- 5.3 Reporter Genes for Actinobacteria -- 5.4 Vectors for Mycelial Actinobacteria -- 5.5 Genetic Toolkit for the Manipulation of Mycelial Actinobacteria -- 5.5.1 Site-Specific Recombination Tools -- 5.5.2 Iterative Marker-Free Excision System -- 5.5.3 Transposon Mutagenesis in Mycelial Actinobacteria -- 5.5.4 Programmed Endonucleases, Cas9 -- 5.5.5 Controlling Elements for Transcription Regulation -- References -- 6: Ecology and Habitat Distribution of Actinobacteria -- 6.1 Introduction -- 6.2 Actinobacteria in Natural and Man-Made Environments -- 6.3 Actinobacteria in Terrestrial Habitats -- 6.4 Actinobacteria in Aquatic and Marine Habitats -- 6.5 Actinobacteria in Extreme Habitats -- 6.6 Phages of Actinobacteria -- 6.7 Conclusions: Impact of Molecular Advances on Actinobacterial Ecology and Future Directions -- References -- 7: Physiology of Actinobacteria -- 7.1 Introduction -- 7.2 Growth Requirements -- 7.2.1 Carbon Sources -- 7.2.1.1 Carbohydrate-Degrading Enzymes -- 7.2.1.2 Carbohydrate Uptake. , 7.2.2 Nitrogen Sources -- 7.2.2.1 Proteases and Peptidases and Amino Acid Transport -- 7.2.2.2 Sources of Ammonium and Ammonium Assimilation -- 7.2.3 Phosphorus Uptake and Regulation -- 7.3 Primary Metabolism -- 7.3.1 Carbohydrate Catabolism -- 7.3.2 Carbon Catabolite Repression and Stringent Response -- 7.3.3 Carbon Storage Compounds -- 7.3.4 Nitrogen Metabolism -- 7.3.4.1 Amino Acid Catabolism -- 7.3.4.2 Nucleotide Catabolism -- 7.3.4.3 Nitrogen Metabolite Biosynthesis -- 7.4 Secondary Metabolites -- References -- 8: Regulation of Secondary Metabolites of Actinobacteria -- 8.1 Introduction -- 8.2 Growth Rate and Nutritional Control During Secondary Metabolite Production -- 8.2.1 Influence of Phosphate on Antibiotic Production -- 8.2.2 Influence of Carbon on the Secondary Metabolite Production -- 8.2.2.1 Carbon Catabolic Repression by Glucose in Streptomycetes -- 8.2.2.2 Influence of Glucose on Secondary Metabolite Production -- 8.3 Regulatory Aspects of Nitrogen Metabolism -- 8.4 Influence of Nitrogen Sources on the Regulation of Secondary Metabolite Production -- 8.5 Signaling Molecules Governing Antibiotic Biosynthesis -- 8.5.1 γ-Butyrolactone Signaling -- 8.5.2 Antibiotics as Signaling Molecules -- 8.5.3 Interspecies Signaling in Streptomycetes -- 8.5.4 Positive Control Mechanisms -- 8.5.4.1 Two-Component Systems -- 8.5.4.2 One-Component Systems -- SARPs -- Interaction of Multiple Positive Regulators -- 8.5.5 Negative Control Mechanisms -- 8.5.6 Hierarchical Signaling Cascades -- 8.6 Induction of Silent Secondary Metabolite Clusters by Manipulating Gene Regulation -- 8.6.1 Induction of Silent Secondary Metabolite Clusters in the Native Host -- 8.6.1.1 Nontargeted Approaches to Induce Expression of Silent Clusters in the Native Producers. , 8.6.1.2 Targeted Approaches to Induce Expression of Silent Clusters in the Native Producers -- 8.6.2 Induction of Silent Secondary Metabolite Clusters by Heterologous Expression -- References -- 9: Symbiosis and Pathogenicity of Actinobacteria -- 9.1 Actinobacterial Symbiosis with Microorganisms and Insects -- 9.1.1 Actinobacterial Symbiosis with Microorganisms -- 9.1.2 Actinobacterial Symbiosis with Insects -- 9.1.2.1 Actinobacterial Nutritional Interaction with Insects -- 9.1.2.2 The Relationship Between Actinobacteria and Fungus-­Growing Insects -- 9.1.2.3 Symbiont Actinobacteria Protect the Insect Host Against Pathogens -- 9.2 Symbiosis and Pathogenicity in Human -- 9.2.1 Actinobacterial Symbiosis with Human -- 9.2.2 Actinobacterial Human Diseases -- 9.2.2.1 Actinomycetoma -- 9.2.2.2 Nocardiosis -- 9.2.2.3 Actinomycosis -- 9.2.2.4 Whipple Disease -- 9.2.2.5 Corynebacterium Infections -- 9.2.2.6 Mycobacterium tuberculosis -- 9.2.2.7 Nontuberculous Mycobacterial Infections -- 9.3 Actinobacterial Symbiosis and Pathogenicity in Animals -- 9.3.1 Actinobacterial Symbiosis with Animals -- 9.3.2 Actinobacterial Diseases in Animals -- 9.3.2.1 Animal Nocardiosis -- 9.3.2.2 Dermatophilosis -- 9.3.2.3 Caseous Lymphadenitis in Sheep and Goats -- 9.3.2.4 Nocardioform Placentitis in Horses -- 9.4 Actinobacterial Symbiosis and Pathogenicity with Plants -- 9.4.1 Actinobacterial Symbiosis with Plants -- 9.4.2 Actinobacterial Diseases in Plants -- References -- 10: The Role of Actinobacteria in Biotechnology -- 10.1 Color Codes of Biotechnology -- 10.2 Actinobacteria and Red Biotechnology -- 10.2.1 Antibacterial Agents -- 10.2.1.1 The "Golden Era" -- 10.2.1.2 The Next Generations -- 10.2.1.3 Oldie Approach -- 10.2.1.4 Siderophores -- 10.2.1.5 Conclusion and Outlook -- 10.2.2 Antifungal Agents. , 10.2.3 Antiviral Agents: The Labyrinthopeptin Story -- 10.2.4 Antitumor Agents -- 10.2.4.1 Cytostatics -- 10.2.4.2 Toxins for Immunoconjugates -- 10.2.5 Immunosuppressive Agents -- 10.2.6 Antiparasite Agents -- 10.2.7 Enzyme Inhibitors -- 10.2.7.1 Enzyme Inhibitors: Products from Satoshi Omura's and Hamano Umezawa's Groups -- 10.2.7.2 α-Glucosidase Inhibitor Acarbose -- 10.3 Actinobacteria and White Biotechnology -- 10.3.1 Enzymes -- 10.3.1.1 Proteases -- 10.3.1.2 Amylases -- 10.3.1.3 Xylanases -- 10.3.1.4 Cellulases -- 10.3.1.5 Other Enzymes -- 10.3.2 Organic Acids -- 10.3.3 Microbial Biotransformation -- 10.3.4 Biofuel -- 10.4 Actinobacteria and Green Biotechnology -- 10.4.1 Biocontrol -- 10.4.2 Herbicides and Insecticides -- 10.4.3 Animal Growth Promoters -- 10.5 Actinobacteria and Yellow Biotechnology -- 10.5.1 Vitamins -- 10.5.2 Amino Acids -- 10.6 Actinobacteria and Blue Biotechnology -- 10.6.1 Aquaculture -- 10.6.2 Antifouling Compounds -- 10.7 Actinobacteria and Gray Biotechnology -- 10.7.1 Recycling of Organic Compounds -- 10.7.2 Bioremediation of Toxic Agents -- 10.7.2.1 Bioremediation of Heavy Metals -- 10.7.2.2 Bioremediation of Pesticides -- 10.7.2.3 Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs) -- 10.7.3 Protection from Corrosion -- 10.8 Actinobacteria and Gold Biotechnology -- 10.8.1 Bioinformatics -- 10.8.2 Production of Nanoparticles (NPs) -- References -- 11: Practical Aspects of Working with Actinobacteria -- 11.1 Morphological Investigation -- 11.1.1 Macroscopic -- 11.1.1.1 The Aerial Mycelium and Its Color -- 11.1.1.2 Color of the Substrate Mycelium and the Soluble Pigments -- 11.1.2 Microscopic Analyses -- 11.1.2.1 Formation of Sporangia -- 11.1.2.2 Formation of Spore Chains and the Spore Surface Ornamentation -- 11.1.2.3 Light Microscopic Characterization. , 11.1.2.4 Scanning Electron Microscopy.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-6025
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-9699
    Keywords: Myxozyma neglecta ; Myxozyme mucilagina ; Candidaceae ; mol% G + C ; DNA-DNA homology ; yeasts ; taxonomy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three strains of Myxozyma mucilagina including the type strain were reexamined. Based on differences in their carbon utilization pattern, mobility of isoenzymes, mol% G + C of their DNA and extent of DNA complementary the new species Myxozyma neglecta is proposed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0170-2041
    Keywords: Narbosines ; Metabolites, secondary ; Streptomyces ; Rhodinosides ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In the culture broth of two new Strepomyces strains several novel 2,3,6-trideoxy-L-threo-hexose (rhodinose) metabolites, narbosines A to E (2-6, 8, 9), were detected besides α-N-acetylanhydro-L-ornithine (11) by using the chemical screening method. Their structures were deduced from spectroscopical data as well as from chemical transformations. Narbosine A (2/3) was shown to be a 1:1 anomeric mixture of α-L-rhodinopyranosyl-(1→4) -α/β-L-rhodinopyranose, the others are partially oxidatively and reductively transformed derivatives of 2/3. A destinct antiviral activity was observed for the described metabolites.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0170-2041
    Keywords: Oasomycin ; Metabolites, secondary ; Macrolactone ; Desertomycin ; Chemical screening ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: New macrolactones, named oasomycin A to D (1 to 4), were discovered by a chemical screening in the culture broth of Streptoverticillium baldacii subsp. netropse (strain FH-S 1625). The structures were established by detailed spectroscopic analysis. The fundamental 42-membered lactone moiety of oasomycin A and B (1 and 2) is analogous to that of desertomycin A (5), while the oasomycins C and D (3 and 4) are the first representatives of macrolactones bearing a 44-membered skeleton. These metabolites can be distinguished by side chain modifications at C-41 or C-43 as well as the presence of an α-linked D-mannose moiety attached to 22-OH. Due to the structural similarities the oasomycins are integrated into the desertomycin family. In vitro testing by using the HEP-G2 cell assay showed oasomycin A (1) to be an inhibitor of de novo cholesterol biosynthesis.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0170-2041
    Keywords: Gabosine ; Metabolites, secondary ; Streptomyces ; Carba-sugar ; Chemical screening ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Chemical screening of different Streptomycetes strains resulted in the detection, isolation, and structure elucidation of a number of novel carba-sugars. The constitution of these secondary metabolites, named gabosines A to K (1 to 11), was deduced from spectroscopic data as well as chemical transformation reactions. The gabosines exhibit a basic C7 skeleton and can be characterized as hydroxylated branched cyclohexanone derivatives, which show structural similarities to carbohydrates deriving from secondary metabolism. The configuration fo the gabosines (absolute stereochemistry for 1, 4, 5, and 6; relative configuration for the remaining metabolites) was determined by derivatization with chiral acids (Helmchen's method), NMR spectral analysis, as well as by a comparison of optical rotation values with those of the already known gabosines B (2) and C (3). The new term “ketocarbasugars” is used to characterize a typical ketone containing subgroup of carba-sugars originating from microbial sources. The well available natural gabosines can be used as suitable chiral building blocks.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0170-2041
    Keywords: Streptomyces violaceus ; Chemical screening ; 2-Pyrrolecarboxylic acid derivatives ; Glycerol ester, NMR assignments ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Glycerinopyrin (1) was detected by chemical screening as a new metabolite from Streptomyces violaceus. Its structure was elucidated by chemical and spectroscopical methods as (2S)- 2,3-dihydroxypropyl 1-hydroxy-4-methyl-2-pyrrolecarboxylate.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0170-2041
    Keywords: Waraterpol ; Metabolites, secondary ; Penicillium ; Chemical screening ; Antibacterial agents ; Antifungal agents ; HIV ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Substituted phenols can easily be recognized by using the chemical screening method, whereby they are found to be widely spread secondary metabolites of microorganisms. In the culture filtrate of Penicillium sp. (strain FH-A 6260) new phenols named waraterpols were detected by a striking purple coloration by using anisaldehyde/sulfuric acid. These secondary metabolites (1 to 3 and 6 to 8) exhibit a C15-carbon skeleton and can be characterized as hydroxylated branched-chain sesquiterpenoids with a benzoide moiety. The minor compounds were O-acetyl (2 and 3) and dehydrated derivatives (6 to 8) of the parent compound waraterpol (1), which was shown to be 6-[2-hydroxy-4-(hydroxymethyl)phenyl]-2-methylheptane-1,6-diol. Derivatization of 1 resulted in the quinone and hydroquinone compounds 10 and 5 as well as in the cyclic derivatives 11 and 12. The waraterpols exhibit distinct antibacterial and antifungal activities whereas an inhibition of HIV-1 in a MT-4 cell assay was found for 11.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...