GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Physical organic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (78 pages)
    Edition: 1st ed.
    ISBN: 9780323850230
    Series Statement: Issn Series
    DDC: 547.13
    Language: English
    Note: Intro -- Advances in Physical Organic Chemistry -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Beyond transition state theory-Non-statistical dynamic effects for organic reactions -- 1. Introduction -- 1.1. Transition state theory (TST) -- 1.2. Assumptions that are not always valid -- 1.3. When should one suspect that TST is not sufficient? -- 1.4. Entropic intermediates -- 2. Characterizing non-TST effects -- 2.1. Ab initio molecular dynamics (AIMD) -- 2.2. Simulation results -- 2.3. The relationship between experiment and theory -- 3. Representative examples -- 3.1. Dynamic matching -- 3.2. Post-transition state bifurcations (PTSBs) -- 3.3. Recrossing -- 3.4. Roaming -- 4. Concluding remarks -- Acknowledgments -- Glossary -- References -- Chapter Two: Synthesis of π-extended non-alternant hydrocarbons based on azulene (5-7), pentalene (5-5) and heptalene (7- ... -- 1. Introduction -- 2. Construction of azulene- or pentalene framework through activation of sp-carbons with Lewis acid metals -- 2.1. Synthesis of PAH having an azulene subunit from enediyne frameworks -- 2.2. Catalytic cycloisomerization of conjugated bisbutatrienes into π-extended pentalenes with a,f-ring fusion mode -- 3. Synthesis and characterization of dibenzo[a,f]pentalene derivatives -- 4. Elucidation of interrelation between open-shell and antiaromatic characters in diareno[a,f]pentalenes -- 5. Synthesis and characterization of planar heptalene derivative with open-shell and antiaromatic characters -- 6. Conclusions and outlook remarks -- References -- Chapter Three: Phenanthrylene-alkynylene macrocycles, phenanthrene-fused dicyclopenta[b,g]naphthalene, as well as relevan ... -- 1. Introduction -- 2. Tetraalkoxyphenanthrene-fused octadehydro[12]annulenes -- 3. Tetraalkoxyphenanthrylene-alkynylene macrocycles -- 4. Benzo- and naphthopentalenes. , 5. Phenanthrene-fused dicyclopenta[b,g]naphthalene and related structures -- 6. Difluoreno[4,3-b:3,4-d]furan -- 7. Summary and perspective -- Acknowledgments -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Physical organic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (387 pages)
    Edition: 1st ed.
    ISBN: 9780128004494
    Series Statement: Issn Series
    DDC: 547.13
    Language: English
    Note: Front Cover -- ADVISORY BOARD -- Advances in Physical Organic Chemistry -- Copyright -- CONTENTS -- CONTRIBUTORS -- PREFACE -- Chapter One - Is the Single-Transition-State Model Appropriate for the Fundamental Reactions of Organic Chemistry? Experime ... -- 1. INTRODUCTION -- 2. KINETIC METHODS TO DIFFERENTIATE BETWEEN SINGLE-STEP AND COMPLEX MECHANISMS -- 3. SN2 REACTIONS IN THE GAS PHASE AND IN SOLUTION -- 4. PROTON TRANSFER REACTIONS OF SIMPLE AND ARYL NITROALKANES IN SOLUTION AND IN THE GAS PHASE -- 5. HYDRIDE TRANSFER REACTIONS OF NADH/NAD+ MODEL AND RELATED SYSTEMS -- 6. COMPUTATION STUDIES OF ELECTROPHILIC AROMATIC SUBSTITUTION -- 7. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter Two - The Influence of Structure on Reactivity in Alkene Metathesis -- 1. INTRODUCTION -- 2. INITIATION OF METATHESIS PRECATALYSTS -- 3. THE EFFECTS OF SUBSTRATE STRUCTURE ON REACTIVITY -- 4. TOOLS FOR STUDYING CATALYTIC METATHESIS -- 5. SUMMARY AND OUTLOOK -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter Three - In This Molecule There Must Be a Conical Intersection -- 1. INTRODUCTION -- 2. INTRODUCTION TO QUALITATIVE VB THEORY -- 3. UNDERSTANDING CONICAL INTERSECTIONS USING VB THEORY: 4 ORBITALS WITH 4 ELECTRONS AND 3 ORBITALS WITH 3 ELECTRONS -- 4. UNDERSTANDING 6 ORBITALS WITH 6 ELECTRONS CONICAL INTERSECTIONS: BENZENE PHOTOCHEMISTRY4 -- 5. OTHER N ORBITAL WITH N ELECTRONS CONICAL INTERSECTIONS -- 6. QUALITATIVE VB ANALYSIS OF CONICAL INTERSECTIONS INVOLVING CHARGE TRANSFER, LONE PAIRS AND PROTON TRANSFER -- 7. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter Four - Structure and Mechanism in Ketene Chemistry -- 1. INTRODUCTION -- 2. SUBSTITUENT EFFECTS ON KETENE STABILITY AND REACTIVITY -- 3. PREPARATION OF KETENES -- 4. KETENE REACTIONS -- 5. CONCLUSION -- REFERENCES -- SUBJECT INDEX -- AUTHOR INDEX -- CUMULATIVE INDEX OF TITLES. , CUMULATIVE INDEX OF AUTHORS -- Color Plates.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Physical organic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (235 pages)
    Edition: 1st ed.
    ISBN: 9780124078314
    Series Statement: Issn Series
    DDC: 547.13
    Language: English
    Note: Front Cover -- Advances in Physical Organic Chemistry -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Time-Resolved Electron Paramagnetic Resonance Spectroscopy: History, Technique, and Application to Supramolec ... -- 1. Introduction -- 2. Definition of the TREPR Experiment -- 3. Experimental Considerations for TREPR -- 4. TREPR System Components -- 4.1. Lasers and Optics -- 4.2. Resonator, Sample, Cell, and Pump Requirements -- 4.3. Microwave Bridge Preamplifier -- 4.4. Boxcar (Digitizer), Computer, and EPR Scan Time -- 4.5. Timing and Monitoring (Delay Generator, Photodiode, and Oscilloscope) -- 4.6. Test Systems -- 5. Chemically Induced Electron Spin Polarization (CIDEP) Mechanisms -- 5.1. The Triplet Mechanism (TM) -- 5.2. The Radical-Triplet Pair Mechanism -- 5.3. The Radical Pair Mechanism (RPM) -- 5.4. Confinement and the Spin-Correlated Radical Pair Mechanism -- 5.5. Superpositions of CIDEP Mechanisms -- 6. Applications of TREPR -- 6.1. Applications in Supramolecular Chemistry -- 6.2. Applications in Macromolecular Chemistry -- 6.2.1. Characterization of Main-Chain Radicals from the Photodegradation of Acrylic Polymers -- 6.2.2. Model Systems for Acrylic Polymeric Radicals -- 6.2.3. Degradation of Block Copolymers -- 6.2.4. RTPM as a Tool for Studying Long-Range Chain Dynamics in Polymers -- 7. Summary and Outlook -- Acknowledgments -- References -- Chapter Two: Avoiding CO2 in Catalysis of Decarboxylation -- 1. Introduction -- 1.1. Decarboxylation and the Formation of CO2 -- 1.2. Alternatives to Direct Formation of CO2 -- 2. Enzyme Catalysis -- 2.1. Enzymes Can Catalyze Decarboxylation Beyond Our Expectations -- 2.2. Enzyme-Catalyzed Decarboxylation by Addition to Thiamin Diphosphate -- 2.3. The Predecarboxylation Intermediate -- 3. Mechanistic Issues -- 3.1. Tautomeric Intermediates -- 3.2. Insights on Reversibility. , 3.3. Reversion as a General Problem in Decarboxylation Reactions -- 3.4. Carbanion Reactivity and Nonperfect Synchronization -- 4. Lessons from Theory -- 4.1. Computational Modeling Applied to Decarboxylation -- 5. CO2 - Reactivity and Reverse Reactions -- 5.1. Internal Return -- 5.2. Consequences of Low Solubility of CO2 -- 6. Alternatives to CO2 - Carbonic Acid Derivatives -- 6.1. Back to Bicarbonate -- 6.2. Acid Catalysis and Alternative Mechanisms for Decarboxylation -- 6.3. Energy of Alternatives to CO2 -- 6.4. Evidence for Associative Pathways: Decarboxylation of Pyrrole-2-Carboxylic Acid -- 6.5. Protonated Carbonic Acid -- 7. Reactions Proceeding Through Hydrated Intermediates -- 7.1. Reexamination of Aromatic Decarboxylation Reactions -- 7.2. Aromatic Decarboxylation: Mesitoic Acid -- 7.3. Aromatic Decarboxylation -- 7.4. Generalized Aromatic Decarboxylation Pathways -- 7.5. Decarboxylation is not Always a Unimolecular Dissociative Process -- 7.6. Base-Catalyzed Decarboxylation of Thiamin-Derived Intermediates -- 7.7. Hydration of Esters and Acids -- 7.8. Hydration of Carboxylates -- 8. Rethinking the Decarboxylation of Trichloroacetic Acid -- 8.1. Historical Asides on Base-Catalyzed Decarboxylation -- 8.2. Base-Catalyzed Decarboxylation of Trichloroacetate as a Disproof of the Dualistic Theory of Bonding139 -- 8.3. Modern Interpretation of Reported Base-Catalyzed Decarboxylations -- 8.4. Potential Intermediates Along the Base-Catalyzed Route -- 9. A Basis for Mechanistic Diversity -- 9.1. Diverse Associative Catalytic Routes -- 10. The Role of Metal Ions -- 10.1. Do Lewis Acids Activate CO2 or Carbonic Acid Derivatives? -- 11. Conclusions and Prospects -- Acknowledgments -- References -- Chapter Three: Binding and Reactivity at Bilayer Membranes -- 1. Introduction -- 1.1. Biological and Synthetic Membranes. , 1.2. Organization and Motion Within Lipid Bilayers -- 1.3. Analytical Platforms for Studying Bilayers -- 1.3.1. Vesicles -- 1.3.2. Supported Bilayers -- 1.3.3. ``Black´´ Lipid Membranes -- 2. Binding to Membranes -- 2.1. The Effect of the Bilayer Environment on Molecular Recognition -- 2.2. Multivalent Recognition at Bilayers -- 2.2.1. Receptor Lipid Clustering Mediated by Multivalent Ligands -- 2.2.2. Understanding the Avidity of Multivalent Ligands -- 2.2.3. The Interdependence of Clustering and Multivalent Recognition of Bilayer-Embedded Lipids -- 2.2.4. Multivalent Intermembrane Recognition: Vesicle Aggregation and Fusion -- 3. Chemical Reactivity at Membranes -- 3.1. Reactions Between Soluble Reactants at the Membrane Interface -- 3.2. Reactions Between Membrane-Bound Reactants/Catalysts and Soluble Reactants -- 3.3. Reactions Between Reactants Both Embedded in Membranes -- 4. Conclusions -- Acknowledgments -- References -- Subject Index -- Author Index -- Cumulative Index of Titles -- Cumulative Index of Authors -- Color Plate.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Physical organic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (294 pages)
    Edition: 1st ed.
    ISBN: 9780128050811
    Series Statement: Issn Series
    DDC: 547.13
    Language: English
    Note: Front Cover -- Advances in Physical Organic Chemistry -- ADVISORY BOARD -- Advances in Physical Organic Chemistry -- Copyright -- Contents -- CONTRIBUTORS -- PREFACE -- One - Equilibrium Effective Molarity As a Key Concept in Ring-Chain Equilibria, Dynamic Combinatorial Chemistry, Co ... -- 1. INTRODUCTION -- 2. EFFECTIVE MOLARITY -- 3. EQUILIBRIUM MACROCYLIZATIONS -- 3.1 Ring-Chain Equilibria -- 3.2 Ring-Ring Equilibria -- 3.3 Self-Assembly Macrocyclizations -- 4. DYNAMIC COMBINATORIAL CHEMISTRY -- 4.1 One-Monomer Dynamic Libraries -- 4.1.1 Dynamic Libraries From Transesterification Reaction -- 4.1.2 Dynamic Libraries From Olefin Metathesis Reaction -- 4.1.3 Dynamic Libraries From Transacetalation (Formal Metathesis) Reaction -- 4.1.4 Dynamic Libraries From Imine Metathesis -- 4.1.5 Dynamic Libraries From Hydrogen Bonding Interactions (Supramolecular DLs) -- 4.2 Two-Monomer Dynamic Libraries -- 4.3 Templated Dynamic Libraries -- 5. COOPERATIVITY AND SELF-ASSEMBLY -- 5.1 Statistical Factors and Microscopic Constants -- 5.1.1 The Symmetry Number Method -- 5.1.2 The Direct Counting Method -- 5.2 Allosteric Cooperativity -- 5.3 Chelate Effect and Chelate Cooperativity -- 5.4 Interannular Cooperativity -- 5.5 Stability of an Assembly -- 6. CONCLUSION -- REFERENCES -- Two - Thermodynamic Effective Molarities for Supramolecular Complexes -- 1. INTRODUCTION -- 1.1 Multivalency and Cooperativity -- 1.2 Effective Molarity -- 2. EFFECTIVE MOLARITIES FOR SUPRAMOLECULAR COMPLEXES -- 2.1 Data Collection -- 2.2 Examples of Different Types of Supramolecular Complex -- 2.2.1 DMC -- 2.2.2 H-Bonding Interactions -- 2.2.3 Coordination -- 2.2.4 Hydrophobic Effects -- 2.2.5 Multiple Binding -- 2.2.6 Biomolecules -- 2.3 Distribution of Effective Molarity Values -- 2.3.1 Relationship Between Association Constants and Values of Effective Molarity. , 2.4 Supramolecular Complexes With Very Large Values of Effective Molarity -- 2.5 Supramolecular Complexes With Very Small Values of Effective Molarity -- 2.6 Solvent Effects on Effective Molarity -- 3. CONCLUSION -- APPENDIX: COLLECTION OF THERMODYNAMIC EFFECTIVE MOLARITY VALUES FOR SUPRAMOLECULAR COMPLEXES -- ACKNOWLEDGEMENTS -- REFERENCES -- Three - Reactivity of Nucleic Acid Radicals -- 1. INTRODUCTION -- 2. RADICAL FORMATION IN NUCLEIC ACIDS -- 3. THE NORRISH TYPE I PHOTOREACTION -- 4. C1′-RADICAL GENERATION, REACTIVITY AND RELATED MECHANISTIC IMPLICATIONS -- 4.1 C1′-Radical Formation -- 4.2 C1′-Radical Reactivity -- 4.3 Utility of C1′-Radical Generation as a Source of 2-Deoxyribonolactone in Mechanistic Studies -- 4.4 Probing DNA Repair Enzyme Activity Using Independently Generated 2′-Deoxyuridin-1′-yl Radical (3) -- 5. C2′-RADICAL GENERATION AND REACTIVITY IN DNA, RIBONUCLEOSIDES AND RNA -- 5.1 C2′-Radical Formation Following Irradiation of 5-Halopyrimidine Nucleotides in DNA -- 5.2 Generation and Reactivity of the 2′-Radical in RNA -- 5.3 C2′-Radical Formation and Reactivity Following Irradiation of 5-Bromouridine in RNA -- 6. C3′-RADICAL GENERATION AND REACTIVITY IN DNA -- 6.1 C3′-Radical Formation Following Irradiation of Transition Metal Coordination Complexes -- 6.2 Independent Generation and Reactivity of Thymidin-3′-yl Radical (35) -- 7. C4′-RADICAL GENERATION AND REACTIVITY IN DNA AND RNA -- 7.1 C4′-Radical Formation -- 7.2 C4′-Radical Reactivity in DNA -- 7.3 Independent Generation and Reactivity of C4′-Radicals in DNA -- 7.4 Double-Strand Cleavage via a Single C4′-Radical -- 7.5 The Role of Independent C4′-Radical Generation in Understanding Electron Transfer in DNA -- 7.6 C4′-Radical Reactivity in RNA -- 8. C5′-RADICAL GENERATION AND REACTIVITY IN DNA -- 8.1 C5′-Radical Formation -- 8.2 C5′-Radical Reactivity in DNA. , 8.3 Independent Generation and Reactivity of C5′-Radicals -- 9. NUCLEOBASE RADICAL GENERATION AND REACTIVITY IN DNA AND RNA -- 9.1 Nucleobase Radical Formation -- 9.2 Nucleobase Radical Reactivity -- 9.3 Independent Generation and Reactivity of DNA Nucleobase Radical Adducts -- 9.4 Independent Generation and Reactivity of RNA Nucleobase Radical Adducts -- 9.5 Independent Generation and Reactivity of DNA 5-(2′-Deoxyuridinyl)methyl and 5-(2′-Deoxycytidinyl)methyl Radicals -- 9.6 Independent Generation and Reactivity of Neutral Purine Radicals -- 10. SUMMARY AND FUTURE CONSIDERATIONS -- ACKNOWLEDGEMENT -- REFERENCES -- Four - Computational Studies of Environmental Effects and Their Interplay With Experiment -- 1. INTRODUCTION -- 2. COMPUTATIONAL MODELS -- 2.1 QM/Classical Models -- 2.1.1 Ground-State Theory -- 2.1.2 Extension to Molecular Excited States -- 3. THE INTERPLAY WITH EXPERIMENTS: THE SOLVATED MOLECULE AND ITS SPECTROSCOPIC RESPONSES -- 3.1 Ground-State Spectroscopies -- 3.2 Excited-State Spectroscopies -- 4. BEYOND THE SOLVATED MOLECULE -- 5. CONCLUSIONS -- REFERENCES -- SUBJECT INDEX -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- Z -- AUTHOR INDEX -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- X -- Y -- Z -- CUMULATIVE INDEX OF TITLES -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Physical organic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (118 pages)
    Edition: 1st ed.
    ISBN: 9780081029015
    Series Statement: Issn Series
    DDC: 547.13
    Language: English
    Note: Front Cover -- Advances in Physical Organic Chemistry -- Copyright -- Contents -- Contributors -- Chapter One: Computational asymmetric catalysis: On the origin of stereoselectivity in catalytic reactions -- 1. Introduction -- 2. Asymmetric dearomative amination of β-naphthols -- 3. Pd-Catalyzed C-H Arylation -- 4. Desymmetrization of three-substituted oxetanes -- 5. Enantioselective heck matsuda arylation -- 6. Enantioselective synthesis of indoles -- 7. Asymmetric α-allylation of aldehydes -- 8. Summary and outlook -- References -- Chapter Two: The transition state and cognate concepts -- 1. Introduction -- 2. Conceptual power of the transition state -- 3. Glossary of terms -- 3.1. Potential-energy surface (PES) -- 3.2. Saddle point -- 3.3. Minimum energy reaction path -- 3.4. Reaction coordinate (part 1) -- 3.5. Activated complex -- 3.6. Transition structure -- 3.7. Intrinsic reaction coordinate -- 3.8. Transition vector -- 3.9. Transition-state structure -- 3.10. Transition state -- 4. Computation and experiment for simple systems -- 4.1. Application of statistical mechanics to a single transition structure -- 4.2. Inference of transition-state structure from empirical studies -- 4.3. Complications: Saddle points in series and in parallel-Virtual transition states -- 4.4. Potential energy vs free energy -- 5. Transition state for condensed systems: Concepts and simulations -- 5.1. Free-energy surfaces for condensed systems -- 5.2. Collective variables -- 5.3. Minimum free-energy paths -- 5.4. Variational transition state theory -- 5.5. Transmission coefficient -- 5.6. Reaction coordinate (part 2) -- 5.7. The equicommittor and the error in TST -- 6. Concluding remarks -- Acknowledgments -- References -- Chapter Three: Computational physical organic chemistry using the empirical valence bond approach -- 1. Introduction. , 2. Theoretical background -- 3. Dissecting catalysis using the empirical valence bond approach -- 4. Using the empirical valence bond approach to understand linear free energy relationships in enzymatic reactions -- 5. Using the empirical valence bond approach to understand the temperature dependence of activation free energies -- 6. Using the empirical valence bond approach to explore kinetic isotope effects in proton and hydride transfer reactions -- 7. Using the empirical valence bond approach to understand the evolution of enzyme function -- 8. Conclusion -- Acknowledgments -- References -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Physical organic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (316 pages)
    Edition: 1st ed.
    ISBN: 9780128024294
    Series Statement: Issn Series
    DDC: 547.13
    Language: English
    Note: Front Cover -- ADVISORY BOARD -- Advances in Physical Organic Chemistry -- Copyright -- CONTENTS -- CONTRIBUTORS -- PREFACE -- One - Metal Ion-Promoted Leaving Group Assistance in the Light Alcohols -- 1. INTRODUCTION -- 1.1 Problems with Water as a Solvent for Metal Ion-Promoted Solvolyses are Ameliorated in Alcohols -- 2. METAL ION-PROMOTED LGA -- 2.1 Brief Description of LGA and Modes of Involvement of the Metal Ion -- 2.2 Early Examples with Acetyl Imidazole and Its (NH3)5CoIII-Complex where the Metal Ions Act as Lewis Activators and Provide L ... -- 2.3 Early Examples with Esters Having Complex Mechanisms for Methanolysis Promoted by Lanthanides and a Triazacyclododecane:ZnI ... -- 2.4 DFT Computational Study of the Methanolysis of Carboxylate Esters Promoted by ZnII-Complexed Methoxide (18) -- 3. METAL ION-PROMOTED ALCOHOLYSIS OF PHOSPHATES -- 3.1 Proof of Concept: LGA Provided by a CuII:Phenanthroline in the Solvolysis of Closely Positioned tri-, di-, and Monophosphates -- 3.2 Bimolecular Catalytic Phosphate Cleavage Reactions where Metal Ion-Promoted LGA is Apparent -- 3.3 DFT Computational Study of the 23-Promoted Methanolytic Cleavage of 24f -- 3.4 Additional Systems where Metal Ion-Promoted LGA Occurs -- 3.4.1 Yb3+-Catalyzed Cleavage of Methyl Aryl Phosphate Diesters Having ortho-C(=O)OCH3 Groups40 -- 3.4.2 (La3+(−OCH3))2 Catalysis of the Methanolysis of Phosphate Triesters Having ortho-C(=O)OCH3 Group.46 -- 4. LGA PROVIDED BY METAL IONS IN THE ACYL TRANSFER FROM AMIDES, UREAS, AND CARBAMATES TO SOLVENT ROH -- 4.1 LGA in the Solvolysis of Amides: MII-Promoted Solvolysis of N,N-bis(2-picolyl) Benzamides -- 4.2 Metal Ion-Promoted LGA in Bis(2-picolyl)amine-Derived Ureas and Carbamates -- 4.2.1 Ureas -- 4.2.2 Carbamates -- 5. CONCLUSIONS AND SPECULATIONS -- ACKNOWLEDGMENTS -- REFERENCES. , Two - Medium Effects in Biologically Related Catalysis -- 1. INTRODUCTION -- 2. PHOSPHORYL TRANSFER REACTIONS -- 2.1 Overview of Phosphoryl Transfer in Aqueous Solution -- 2.2 Solvent Effects in Phosphoryl Transfer Reactions -- 2.3 Surfactants Effects on Phosphoryl Transfer Reactions -- 3. SOLVENT EFFECTS IN SULFURYL TRANSFER REACTIONS -- 4. SOLVENT EFFECTS IN SN2 REACTIONS OF S-ADENOSYLMETHIONINE -- 5. DECARBOXYLATION REACTIONS -- 5.1 Decarboxylation of Orotic Acid Derivatives -- 5.2 Decarboxylation of 3-Carboxybenzisoxazoles (Kemp Decarboxylation) -- 6. KEMP ELIMINATION -- 7. CONCLUSIONS AND IMPLICATIONS FOR BIOINSPIRED CATALYSIS -- ACKNOWLEDGMENTS -- REFERENCES -- Three - Combustion Pathways of Biofuel Model Compounds: A Review of Recent Research and Current Challenges Pertaini ... -- 1. INTRODUCTION -- 1.1 Kinetic Mechanisms -- 1.2 Experimental Techniques -- 1.3 Computational Techniques -- 1.4 Simplifying Detailed Mechanisms -- 1.5 High- and Low-Temperature Oxidation Pathways -- 1.6 Atmospheric Chemistry -- 2. OVERVIEW OF FIRST-GENERATION BIOFUELS AND THEIR MODEL COMPOUNDS -- 2.1 Combustion Pathways of Ethanol -- 2.1.1 Unimolecular Decomposition of Ethanol -- 2.1.2 Bimolecular Radical-Induced Decomposition of Ethanol -- 2.1.3 Reactions of Radical Intermediates Derived from Ethanol -- 2.1.3.1 Unimolecular Processes -- 2.1.3.2 Bimolecular Processes -- 2.2 Combustion Pathways of Biodiesel -- 2.2.1 Biodiesel Model Compounds -- 2.2.1.1 Methyl Butanoate and Related Small Esters -- 2.2.1.2 Large Methyl Esters -- 2.2.1.3 Unsaturated Methyl Esters -- 2.2.2 Elementary Reaction Kinetics for Biodiesel Fuels -- 2.3 General Challenges in Modeling First-Generation Biofuels -- 3. OVERVIEW OF SECOND-GENERATION BIOFUELS AND THEIR MODEL COMPOUNDS -- 3.1 Cellulose Model Compounds -- 3.1.1 Combustion Pathways of Furan and Methylfurans. , 3.1.2 Combustion Pathways of Saturated Ethers (Tetrahydrofuran, Tetrahydropyran, and Derivatives) -- 3.1.3 Mechanistic Studies of Other Functionalized Monocycles -- 3.1.3.1 Morpholine -- 3.1.3.2 Glucose and Fructose -- 3.1.3.3 Other Cyclic Oxygenates -- 3.2 Lignin Model Compounds -- 3.2.1 Phenethyl Phenyl Ether -- 3.2.2 Other Lignin Models -- 3.3 General Challenges in Modeling Lignocellulosic Biofuels -- 4. OVERVIEW OF THIRD- AND FOURTH-GENERATION BIOFUELS -- 5. CHALLENGES IN BIOFUEL COMBUSTION ENGINEERING -- 6. CONCLUSION -- REFERENCES -- Four - Mechanistic Perspectives on Stereocontrol in Lewis Acid-Mediated Radical Polymerization: Lessons from Small- ... -- 1. INTRODUCTION -- 2. IMPORTANT FEATURES OF RADICAL REACTIVITY -- 3. RADICAL POLYMERIZATION -- 4. LEWIS ACIDS IN RADICAL-BASED POLYMER SYNTHESIS -- 5. SYNTHETIC RADICAL TRANSFORMATIONS -- 6. LEWIS ACIDS IN RADICAL-BASED SYNTHETIC TRANSFORMATIONS -- 7. SOME LESSONS FROM SYNTHESIS -- 7.1 Is the Lewis Acid-Base Interaction Too Weak? -- 7.2 Is the Chelate Unstable? -- 7.3 Does the Chelate Favor Meso Propagation? -- 7.4 Does the Lewis Acid Bind in the Correct Position during Propagation? -- 7.5 Is the Lewis Acid Kinetically Labile? -- 7.6 Summary and Outlook -- 8. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- SUBJECT INDEX -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V -- Y -- Z -- AUTHOR INDEX -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- X -- Y -- Z -- CUMULATIVE INDEX OF TITLES -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V -- W -- Y -- CUMULATIVE INDEX OF AUTHORS -- A -- B -- C -- D -- E -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- W -- Y -- Z -- Color plate -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Physical organic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (232 pages)
    Edition: 1st ed.
    ISBN: 9780128121979
    Series Statement: Issn Series
    DDC: 547.13
    Language: English
    Note: Front Cover -- Advances in Physical Organic Chemistry -- Copyright -- Contents -- Contributors -- Preface -- References -- Chapter One: The Factors Determining Reactivity in Nucleophilic Substitution -- 1. Introduction -- 2. The Nucleophile in Methyl Transfer Reactions -- 2.1. Reactions in Solution: Swain and Scott's Nucleophilicity Scale -- 2.2. Nucleophilicity in Gas Phase Reactions -- 2.3. Relationship Between Methyl Cation Affinity and Proton Affinity -- 2.4. Identity SN2 Reactions -- 2.5. The Double-Well Potential Model -- 2.6. Marcus Theory: Relating the Intrinsic Barrier and Reaction Enthalpy to Actual Reaction Barriers -- 2.7. Towards Accurate Models for Methyl Transfer Reactions -- 2.8. The Alpha Effect -- 3. The Leaving Group -- 4. The Substrate -- 4.1. Alkyl-Substituted Carbon Centres -- 4.2. Cyclic Substrates -- 4.3. Benzylic and Allylic Substrates -- 4.4. Aromatic and Vinylic Nucleophilic Substitution -- 4.5. SN2 at Centres of Group 14-18 Elements -- 5. Cationic Reactions and Shift to SN1 -- 6. Kinetic Isotope Effects -- 7. Understanding SN2 Reactivity -- 7.1. Correlations Between Barrier Heights and Physical Observables -- 7.2. VB Theory -- 7.3. HSAB Theory and Related Approaches -- 7.4. Energy Decomposition Analysis -- 8. Reaction Dynamics -- 9. Role of the Solvent -- 10. Summary and Outlook -- References -- Chapter Two: Negative Ion Photoelectron Spectroscopy and Its Use in Investigating the Transition States for Some Organic ... -- 1. Introduction -- 1.1. Transition States -- 1.2. Negative Ion Photoelectron Spectroscopy12,13 -- 1.2.1. Vibrational Bands in NIPE Spectra -- 1.2.2. Franck-Condon Factors for Vibrational Progressions in NIPE Spectra -- 1.2.3. The NIPE Spectrum of CO4∙- and Its Simulation -- 2. Transition State Spectroscopy -- 2.1. TS Spectroscopy of X∙+H-X Hydrogen Abstraction Reactions. , 2.1.1. The NIPE Spectrum of I-H-I- -- 2.1.2. The PES for the Reaction XA∙+H-XBXA-H+XB∙ -- 2.1.3. Antisymmetric Stretching Vibrations on the X-H-X PES -- 2.1.4. Symmetric Stretching Vibrations on the X-H-X PES -- 2.2. TS Spectroscopy of Singlet COT -- 2.2.1. Predicted Violations of Hund's Rule in [4n]Annulenes -- 2.2.2. PESs for Ring Inversion and Bond Shifting in Singlet and Triplet COT and in COT∙- -- 2.2.3. NIPE Spectroscopy of COT∙- -- 2.3. TS Spectroscopy of Singlet OXA -- 2.3.1. The NIPE Spectrum of OXA∙- -- 2.4. TS Spectroscopy of Singlet and Triplet (CO)3 -- 2.4.1. The MOs of (CO)3 -- 2.4.2. The PES for Singlet (CO)3 -- 2.4.3. The PES for Triplet (CO)3 -- 2.4.4. Calculated Franck-Condon Factors -- 2.4.5. The NIPE Spectrum of CO3∙- and Its Simulation -- 3. Summary -- Acknowledgment -- References -- Chapter Three: Probing Transition State Analogy in Glycoside Hydrolase Catalysis -- 1. Scope and Purpose for This Review -- 2. General Introduction -- 2.1. Transition State Analogy -- 2.2. Glycoside Hydrolases -- 2.3. Glycoside Hydrolases: Transition State Analogy -- 3. Intrinsic Reactivity -- 3.1. Furanoside Solvolyses -- 3.2. Pyranoside Solvolyses -- 4. Catalytic Efficiency and Proficiency -- 4.1. Measurement of Uncatalysed Rate Constants at High Temperatures -- 4.2. Extrapolation of Uncatalysed Reaction Rate Constants Using Activated Substrates -- 5. Evaluation of Transition State Analogy by LFERs -- 5.1. Experiments Using Site-Directed Mutagenesis -- 5.2. Experiments Using a Panel of Substrate and Inhibitor Dyads -- 5.3. Experiments Involving Mechanism-Based Covalent Inhibitors -- 6. Recent Examples -- 6.1. Transition State Analogy in GH84 O-GlcNAc Hydrolase -- 6.2. Covalent Inhibitors of Yeast α-Glucosidase -- References -- Chapter Four: Phosphate Ester Hydrolysis: The Path From Mechanistic Investigation to the Realization of Artificial Enzymes. , 1. Introduction -- 2. Phosphate Ester Hydrolysis -- 2.1. The Rate of Phosphate Ester Hydrolysis -- 2.2. The Mechanisms of Phosphate Ester Hydrolysis -- 2.3. Computational Investigations -- 2.4. What Controls the Hydrolytic Reactivity of Phosphate Esters -- 3. Metal Ion Catalysis of Hydrolytic Phosphate Ester Cleavage -- 3.1. The Mechanism of the Metal-Catalysed Reaction -- 3.2. Catalytic Roles of the Metal Ions -- 3.3. Dissection of the Metal Ion Activation Factors -- 3.4. Strategies to Improve the Lewis Acid Activation Effect -- 3.5. Strategies to Improve the Nucleophile Activation -- 4. Comparison Between Enzymes and Artificial Agents Catalysis -- 5. Conclusions -- References -- Chapter Five: Physicochemical Aspects of Aqueous and Nonaqueous Approaches to the Preparation of Nucleosides, Nucleotides ... -- 1. Introduction -- 2. Physicochemical Properties of Nucleosides, Nucleotides and Polyphosphates -- 2.1. Acid-Base Properties -- 2.2. Intermolecular Interactions Between Nucleosides -- 3. Synthetic Methods -- 3.1. An Overview of Widely Used Methods for Phosphoanhydride Bond Formation -- 3.2. New Nonaqueous Solvent-Based Transformations -- 3.2.1. New Methods for Phosphoanhydride Bond Formation -- 3.2.1.1. The Development of New P(III) Strategies -- 3.2.1.2. The Development of New P(V) Strategies -- 3.2.2. Phosphate Nucleophiles -- 3.2.3. Sulphurization -- 3.3. Aqueous Transformations -- 3.4. Ionic Liquid-Based and Solvent-Free Transformations -- 3.4.1. Ionic Liquids -- 3.4.2. Mechanochemical Methods -- 3.4.2.1. Nucleoside Synthesis -- 3.4.2.2. Preparation of Phosphorylated Species -- 4. Conclusions -- Acknowledgments -- References -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Physical organic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (156 pages)
    Edition: 1st ed.
    ISBN: 9780128155394
    Series Statement: Issn Series
    DDC: 547.13
    Language: English
    Note: Front Cover -- Advances in Physical Organic Chemistry -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: The Conundrum of the (C4H7)+ Cation: Bicyclobutonium and Related Carbocations -- 1. Introduction -- 1.1. Early Studies -- 1.2. Terminology -- 1.3. Kinetic Isotope Effects -- 1.4. Gas-Phase Studies -- 1.5. Vibrational Spectroscopy -- 1.6. Structures and Equilibrium of Bicyclobutonium and Cyclopropylmethyl Cations -- 1.7. NMR Spectroscopic Investigations -- 1.8. EIEs on NMR Spectra of Fast-Rearranging (C4H7)+ Cations -- 1.9. Quantum-Chemical Calculations of EIEs in (C4H7)+ Cations -- 1.9.1. The Size and the Direction of the EIEs -- 1.9.2. Population of the Equilibrating Sites -- 1.9.3. The Size of the EIE -- 1.9.4. The EIE-Induced Direction of the NMR Chemical Shifts of the Averaged Methylene Signals -- 1.9.5. Quantum-Chemical Calculations for the (C4H7)+ Cation System -- 2. Substituted (C4H7)+ Carbocations -- 2.1. Fast-Equilibrating Substituted Bicyclobutonium Ions -- 2.1.1. Solvolysis Results of Substituted Cyclobutyl Derivatives -- 2.2. NMR Spectroscopic and Computational Investigations of Substituted (C4H7)+ Cations -- 2.2.1. 1-Methyl-Bicyclobutonium Cation -- 2.2.2. The 1-(Trimethylsilyl)Bicyclobutonium Ion -- 2.3. EIEs in Substituted Cyclopropylmethyl and Substituted Cyclobutyl Cations -- 2.4. Static Substituted Bicyclobutonium Ions -- 2.5. Spin-Spin Coupling Constants -- 2.6. 1,3-Disubstituted Static Bicyclobutonium Ions -- 3. Conclusion -- References -- Chapter Two: Organic Reaction Outcomes in Ionic Liquids -- 1. Introduction -- 1.1. Scope of This Review -- 1.2. Ionic Liquids: Common Structures and Nomenclature -- 2. Understanding Reaction Outcomes in Ionic Liquids: Key Milestones -- 2.1. Not All Ionic Liquids Are Created Equal -- 2.2. The Importance of the Proportion of the Ionic Liquid in the Reaction Mixture. , 2.3. Understanding the Microscopic Origins of Ionic Liquid Effects -- 2.4. Correlating Reaction Outcomes With Solvent Parameters -- 3. Opportunities Delivered by the Understanding Gained -- 3.1. Extending the Knowledge to Other Systems -- 3.2. Rational Design of an Ionic Liquid Solvent -- 3.3. Biasing Product Selectivity -- 4. Summary and Outlook -- Acknowledgments -- References -- Chapter Three: Polymer Mechanochemistry: A New Frontier for Physical Organic Chemistry -- 1. Introduction -- 2. A Quantitative Model of Mechanochemical Kinetics -- 2.1. Approximate Solutions of the Master Equation of Mechanochemical Kinetics -- 2.1.1. Zeroth-Order Approximation: The EB Model -- 2.1.2. First-Order Approximation: Tilted Potential Energy Surface (TPES) and Cusp Models -- 2.1.3. Second-Order and Complete Harmonic Approximations -- 2.2. Accuracy of the Conventional Approximations and Systematic Strategies of Improving Them -- 2.3. Complicating Factors: Ensemble Effects, the Minimum Length of the Macromolecular Segment, Multibarrier Reactions, an ... -- 3. Experimental Techniques of Polymer Mechanochemistry -- 3.1. SMFS -- 3.2. Flow Fields -- 3.2.1. Quasi-Steady-State Elongational Flows -- 3.2.2. Sonication -- 3.3. Mechanochemical Reactivity Without Macroscopic Motion -- 4. Brief Analysis of Empirical Research in Mechanochemistry -- 4.1. Much Ado About Dissociation of the Disulfide Bond -- 4.2. Emerging Trends in Contemporary Empirical Studies -- 5. Summary -- References -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Physical organic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (194 pages)
    Edition: 1st ed.
    ISBN: 9780128218211
    Series Statement: Issn Series
    DDC: 547.13
    Language: English
    Note: Intro -- Advances in Physical Organic Chemistry -- Copyright -- Contents -- Contributors -- Chapter One: A brief insight into the physicochemical properties of room-temperature acidic ionic liquids and their catal ... -- 1. Introduction -- 2. Classification of acidic ionic liquids -- 2.1. Brønsted acidic ILs -- 2.2. Lewis acidic ILs -- 2.3. Brønsted-Lewis acidic ILs -- 3. Physicochemical properties of RTAILs -- 3.1. Conductivity of RTAILs -- 3.1.1. Effect of constituent ions -- 3.1.2. Effect of solvent -- 3.1.3. Effect of temperature -- 3.2. Density -- 3.3. Thermal stability of RTAILs -- 3.4. Acidity of the RTAILs -- 3.5. Electrochemical stability of RTAILs -- 3.6. Viscosity of RTAILs -- 3.7. Surface tension of RTAILs -- 3.8. Surfactant-like properties of RTAILs -- 3.9. Solvatochromic parameters of RTAILs -- 4. Catalytic uses in CC bond formation reactions -- 4.1. One-pot multicomponent reaction (MCR) -- 4.1.1. Mannich reaction -- 4.1.2. Biginelli reaction -- 4.1.3. Preparation of N-heterocycles and O-heterocycles -- 4.2. Condensation reactions -- 4.3. Electrophilic aromatic substitution -- 4.4. Michael addition -- 4.5. Rearrangements -- 5. Conclusion and future scope -- Acknowledgements -- References -- Chapter Two: Differential features of short-lived intermediates: Structure, properties and reactivity -- 1. Introduction -- 2. General aspects -- 2.1. Radical species -- 2.2. Excited states -- 3. Case studies for some short-lived intermediates -- 3.1. sym-Triazines -- 3.2. Enol ether radical cations -- 3.3. Aminium/aminyl radicals -- 4. Conclusion -- Acknowledgements -- References -- Chapter Three: Steric attraction: A force to be reckoned with -- 1. Introduction -- 1.1. Steric attraction vs steric repulsion -- 1.2. London dispersion forces and their hidden significance -- 2. Quantifying London dispersion forces. , 2.1. Computing London dispersion forces -- 2.2. Experimentally quantifying London dispersion -- 3. Interactions dominated by London dispersion forces -- 3.1. Hydrophobic interactions -- 3.2. π-π Stacking -- 3.3. Aurophilicity -- 3.4. Halogen/chalcogen bonding -- 4. London dispersion as a design tool -- 4.1. Stabilization by steric attraction -- 4.2. Dispersion enhanced catalysis -- 4.3. Fullerenes -- 5. Concluding remarks -- References -- Chapter Four: Quantum mechanics/molecular mechanics multiscale modeling of biomolecules -- 1. Introduction -- 2. Overview of QM/MM methodological aspects -- 2.1. How to partition the system -- 2.1.1. Link atom method -- 2.1.2. Localized orbitals methods -- 2.1.3. Adaptive partitioning -- 2.2. How to calculate the energy of a QM/MM system -- 2.2.1. Subtractive scheme -- 2.2.2. Additive scheme -- 2.2.3. Mechanical embedding -- 2.2.4. Electrostatic embedding -- 2.2.5. Polarizable embedding -- 2.3. Dealing with a very large number of particles in QM-based multiscale approaches -- 2.4. Some codes used for QM/MM calculations -- 3. QM/MM applications to study the binding of ligands to biomolecules -- 3.1. QM/MM optimizations for the study of the binding of supramolecular ligands to proteins and peptides: Molecular tweez ... -- 3.2. QM/MM MD simulations allow investigating the binding of a small molecule to an HTT exon-1 protein with pathogenic tr ... -- 3.3. QM/MM geometry optimization of the binding of the substrate at the active site: Predicted incorporation of non-nativ ... -- 3.4. A combination of QM/MM and MD simulations delivers valuable insights into substrate-enzyme interactions: Antibiotic ... -- 3.5. A detailed QM/MM study addressing cooperative binding: QM/MM study of the active species of the human cytochrome P45. , 3.6. QM/MM MD simulations for understanding the mode of action of HIV protease inhibitors: Synthesis and structural studi ... -- 3.7. QM/MM modeling to investigate the effect of the orientation of an inhibitor in its biding to the enzyme: Identificat ... -- 4. Concluding remarks -- Acknowledgments -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Air-Pollution. ; Electronic books.
    Description / Table of Contents: This textbook comprehensively covers air pollution, now with: a heavily reworked introduction; new and overhauled chapters on source mitigation, noise and light pollution, and air quality experiments; extra materials for students--case studies, lab experiments for class practicals or project work, self-study exercises, plus further questions.
    Type of Medium: Online Resource
    Pages: 1 online resource (723 pages)
    Edition: 4th ed.
    ISBN: 9781498719483
    DDC: 363.7392
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Authors -- 1: Overview of air pollution -- 1.1 What is air pollution? -- 1.2 Historical perspectives -- 1.3 Classification of air pollutants -- 1.3.1 Types of air pollutants -- 1.3.2 Sources of air pollutants -- 1.3.3 Source emission data -- 1.3.3.1 Emission units -- 1.3.4 What is smog? -- 1.4 Why does air pollution need attention? -- 1.5 The basic atmosphere -- 1.5.1 The origins of our atmosphere -- 1.5.2 Natural constituents of air -- 1.5.3 Water in the atmosphere -- 1.5.4 The vertical structure of the atmosphere -- 1.5.4.1 Pressure -- 1.5.4.2 Temperature -- 1.5.5 Photochemical reactions in the atmosphere -- 1.5.5.1 Light absorption and emission processes -- 1.5.5.2 Examples of photochemical reactions -- 1.6 Methods of describing pollutant concentration -- 1.7 Units for expressing atmospheric concentrations -- 1.7.1 Concentration units -- 1.7.1.1 Conversion between gravimetric and volumetric units -- 1.7.1.2 Correction for non-standard temperature and pressure -- 1.7.2 Averaging time -- 1.8 Unconventional air pollutants -- 1.8.1 Incineration as a source of air pollutants -- 1.9 Case study - Historical perspective: The Great London Smog -- 1.9.1 Chronology -- 1.9.2 Health effects -- 1.9.3 Environmental effects -- 1.9.4 Socio-economic impacts -- References and further reading resources -- 2: Gaseous air pollutants -- 2.1 Primary gaseous emissions -- 2.2 Anthropogenic emissions -- 2.2.1 Energy-related emissions -- 2.2.2 Sulphur oxide emissions -- 2.2.2.1 Sulphur dioxide -- 2.2.2.2 Sulphur trioxide -- 2.2.3 Nitrogen oxide emissions -- 2.2.3.1 Nitric oxide -- 2.2.3.2 Nitrogen dioxide formation -- 2.2.4 Ammonia -- 2.2.5 Non-methane volatile organic compounds -- 2.2.6 Carbon monoxide -- 2.2.7 Hydrogen chloride -- 2.2.8 Persistent organic pollutants. , 2.2.8.1 Dioxins and furans -- 2.2.8.2 Polychlorinated biphenyls -- 2.2.8.3 Polybrominated diphenyl ethers -- 2.2.8.4 Polycyclic aromatic hydrocarbons -- 2.3 Secondary gaseous pollutants -- 2.3.1 Tropospheric ozone -- 2.3.2 Wintertime NO2 episodes -- 2.4 Measurement of gases -- 2.4.1 Sampling requirements -- 2.4.2 Gas sampling -- 2.4.2.1 Pumped systems -- 2.4.2.2 Preconcentration -- 2.4.2.3 Absorption -- 2.4.2.4 Adsorption -- 2.4.2.5 Condensation trapping -- 2.4.2.6 Grab sampling -- 2.4.3 Gas concentration measurement -- 2.4.3.1 Wet chemical methods -- 2.4.3.2 Real-time pumped systems -- 2.4.3.3 Real-time remote systems -- 2.4.3.4 Gas chromatography -- 2.4.3.5 Liquid chromatography -- 2.4.3.6 Chromatography with mass spectroscopy -- 2.4.3.7 Inductively coupled plasma spectroscopy -- 2.4.3.8 Optical spectroscopy -- 2.4.4 Quality control -- 2.4.4.1 Blanks -- 2.4.4.2 Calibration -- 2.4.4.3 Permeation tubes -- 2.4.4.4 Gas bottles -- 2.4.4.5 UV O3 generator -- 2.4.4.6 Zero air -- 2.5 Case study - Bhopal gas leak -- References and further reading resources -- 3: Particulate matter -- 3.1 Why particulates are a special case? -- 3.2 Particulate terminology -- 3.3 Particle size distributions -- 3.3.1 Relative sizes of particles and gas molecules -- 3.3.2 Specification of size -- 3.3.3 Presentation of size distributions -- 3.3.4 General features of real size distributions -- 3.4 Aerosol mechanics -- 3.4.1 Drag force -- 3.4.2 Sedimentation -- 3.4.3 Brownian diffusion -- 3.4.4 Coagulation -- 3.4.5 The influence of shape and density -- 3.4.5.1 Shape -- 3.4.5.2 Aerodynamic diameter -- 3.4.6 Relaxation time -- 3.4.6.1 Note on units and dimensions -- 3.4.7 Stopping distance -- 3.4.8 Impaction and interception -- 3.4.9 Stokes number and impactors -- 3.4.10 Thermophoresis -- 3.4.11 Erosion and resuspension -- 3.5 Particle sources -- 3.5.1 Primary particles. , 3.5.1.1 Wind erosion -- 3.5.1.2 Sea salt -- 3.5.1.3 Other natural sources -- 3.5.1.4 Anthropogenic sources -- 3.5.2 Secondary particles -- 3.6 Trends in particle emissions -- 3.7 Measurement of particles -- 3.7.1 Particle sampling -- 3.7.1.1 Isokinetic sampling -- 3.7.1.2 Calibration -- 3.7.2 Particle measurement methods -- 3.7.2.1 Filtration -- 3.7.2.2 British Standard smoke method -- 3.7.2.3 High-volume sampler -- 3.7.2.4 Optical methods -- 3.7.2.5 Beta-attenuation -- 3.7.2.6 Resonating microbalance -- 3.7.2.7 Size fractionation -- 3.7.2.8 Optical sizers -- 3.7.2.9 Aerosol spectrometer -- 3.7.2.10 Inertial impactors -- 3.7.2.11 Electrical mobility analysers -- 3.7.2.12 Diffusion batteries -- 3.7.2.13 Condensation particle counter -- 3.7.3 Chemical composition of aerosols -- 3.7.3.1 Particle microstructure -- 3.7.3.2 Real-time chemical analysis -- 3.7.4 Measurement of coarse particle deposition -- 3.8 Case study - Asbestos -- References and further reading resources -- 4: Area sources -- 4.1 Biogenic area sources -- 4.1.1 Wildfires -- 4.1.1.1 Forest management practices -- 4.1.2 Volcanic emissions -- 4.1.3 Soil emissions -- 4.2 Anthropogenic area sources -- 4.2.1 Landfills -- 4.2.1.1 Landfill directive -- 4.2.1.2 Emerging trends in landfill of waste electrical components -- 4.2.2 Farm emissions -- 4.2.3 Fugitive emissions from industrial processes -- 4.3 Measurement of area sources -- 4.3.1 Confined emissions -- 4.3.1.1 Measurement of volume flow rate -- 4.3.1.2 Measurement of gas concentrations -- 4.3.1.3 Measurement of particle concentrations -- 4.3.2 Unconfined emissions -- 4.3.3 Pervasive sensors -- 4.4 Measurement uncertainties -- 4.5 Modelling of area sources -- 4.6 Case study: The eruption of Eyjafjallajökull, Iceland -- 4.6.1 Volcanoes on Iceland -- 4.6.2 Chronology -- 4.6.3 Impacts of the eruption -- 4.6.4 Volcanic eruptions in the future. , References and further reading resources -- 5: Mobile sources -- 5.1 Road traffic emissions -- 5.1.1 Traffic congestion -- 5.1.2 Combustion of fuel -- 5.1.2.1 Petrol engines -- 5.1.2.2 Diesel engines -- 5.1.2.3 Traffic biofuel in developing countries -- 5.1.3 Combustion emissions -- 5.1.3.1 Emission concentrations -- 5.1.4 Specific pollutants -- 5.1.4.1 NOx -- 5.1.4.2 CO -- 5.1.4.3 Combustion HC -- 5.1.4.4 Benzene -- 5.1.4.5 Evaporation HC -- 5.1.4.6 The importance of air-fuel ratio -- 5.1.4.7 Exhaust particulate matter -- 5.1.4.8 Non-exhaust particulate emissions -- 5.1.4.9 Lead -- 5.1.4.10 Polycyclic aromatic hydrocarbons -- 5.1.5 Reduction of motor vehicle emissions -- 5.1.5.1 Burn less fuel! -- 5.1.5.2 Combustion optimisation -- 5.1.5.3 Emissions recycle -- 5.1.5.4 Vent controls -- 5.1.5.5 Exhaust gas recirculation -- 5.1.5.6 Three-way catalytic converters -- 5.1.6 Diesel exhausts -- 5.1.6.1 Diesel particulate filters -- 5.1.6.2 DeNOx -- 5.1.6.3 Diesel oxidation catalyst -- 5.1.7 Vehicle maintenance -- 5.1.8 Vehicle emission calculations -- 5.1.8.1 Diurnal variations -- 5.1.8.2 Emissions measurement from laboratory and real road tests -- 5.1.8.3 Effect of engine temperature -- 5.1.8.4 Effect of operating mode -- 5.1.8.5 Catalyst degradation -- 5.1.8.6 National vehicle fleets -- 5.1.9 Fuel composition -- 5.1.9.1 Basic specification -- 5.1.9.2 Fuel sulphur content -- 5.1.9.3 Fuel reformulation -- 5.1.10 Diesel versus petrol -- 5.1.10.1 Gaseous emissions -- 5.1.10.2 Particulate emissions -- 5.1.11 Impact of control measures -- 5.1.12 Cleaner vehicle technologies -- 5.1.12.1 Electric -- 5.1.12.2 Hybrid -- 5.1.12.3 Hydrogen -- 5.1.12.4 Fuel cell -- 5.1.13 Alternative fuels -- 5.2 Non-road mobile machinery emissions -- 5.3 Rail emissions -- 5.4 Shipping emissions -- 5.5 Aircraft emissions -- 5.5.1 Emission calculations -- 5.5.2 Aerosol precursors. , 5.5.3 Contrails -- 5.5.4 Dispersion of aircraft emissions -- 5.5.5 Future jet fuels -- 5.5.6 Airport emission standards -- 5.5.7 Carbon dioxide emissions from civil aviation -- 5.6 Generating emissions inventory for mobile sources -- 5.6.1 The Bentley approach -- 5.6.2 The UK National Atmospheric Emissions Inventory -- 5.7 Case study - Traffic restriction schemes -- 5.7.1 London congestion charging -- 5.7.2 Odd-even driving patterns during the Beijing Olympics -- 5.7.3 Odd-even car driving in New Delhi -- References and further reading resources -- 6: Ambient air quality -- 6.1 Gaseous pollutants -- 6.1.1 Nitrogen oxides -- 6.1.2 Sulphur dioxide -- 6.1.3 Carbon monoxide -- 6.1.4 Ozone -- 6.1.4.1 The general picture -- 6.1.5 Volatile organic compounds -- 6.2 Particulate matter -- 6.3 Patterns of occurrence -- 6.3.1 Automatic air quality monitoring networks -- 6.3.1.1 The UK national survey -- 6.3.1.2 Secondary networks -- 6.3.1.3 Data processing -- 6.3.1.4 Other surveys -- 6.3.2 Other measurement networks -- 6.4 Dry deposition of gases -- 6.4.1 Deposition velocity -- 6.4.2 Resistance -- 6.5 Wet deposition -- 6.5.1 Rainfall -- 6.5.2 Rainout -- 6.5.2.1 Washout -- 6.5.3 Dry reactions -- 6.5.4 Wet reactions -- 6.5.5 Cloudwater deposition -- 6.6 Total deposition and budgets -- 6.7 Analysis of an air quality data set -- 6.7.1 The raw data set -- 6.7.2 Time-series plot -- 6.7.3 Roses -- 6.7.4 Diurnal variations -- 6.7.5 Frequency distributions -- 6.7.6 Further statistical analyses -- 6.8 Effect of fireworks on ambient air quality -- 6.8.1 The art and science of fireworks -- 6.8.2 The physics of fireworks -- 6.8.3 The chemistry of fireworks -- 6.8.4 Pollutants associated with fireworks and bonfires -- 6.8.5 Effects on health -- 6.8.6 Effects on the local air quality -- 6.9 Case study: Buncefield Oil Storage Depot disaster. , 6.9.1 Impact of the event on the local air quality.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...