GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The 220 kDa Bordetella pertussis filamentous haemagglutinin (FHA) is the major extracellular protein of this organism. It is exported using a signal peptide-dependent pathway, and its secretion depends on one specific outer membrane accessory protein, FhaC. In this work, we have investigated the influence of conformation on the FhaC-mediated secretion of FHA using an 80 kDa N-terminal FHA derivative, Fha44. In contrast to many signal peptide-dependent secretory proteins, no soluble periplasmic intermediate of Fha44 could be isolated. In addition, cell-associated Fha44 synthesized in the absence of FhaC did not remain competent for extracellular secretion upon delayed expression of FhaC, indicating that the translocation steps across the cytoplasmic and the outer membrane might be coupled. A chimeric protein, in which the globular B subunit of the cholera toxin, CtxB, was fused at the C-terminus of Fha44, was not secreted in B. pertussis or in Escherichia coli expressing FhaC. The hybrid protein was only secreted when both disulphide bond-forming cysteines of CtxB were replaced by serines or when it was produced in DsbA−E. coli. The Fha44 portion of the secretion-incompetent hybrid protein was partly exposed on the cell surface. These results argue that the Fha44–CtxB hybrid protein transited through the periplasmic space, where disulphide bond formation is specifically catalysed, and that secretion across the outer membrane was initiated. The folded CtxB portion prevented extracellular release of the hybrid, in contrast to the more flexible CtxB domain devoid of cysteines. We propose a secretion model whereby Fha44 transits through the periplasmic space on its way to the cell surface and initiates its translocation through the outer membrane before being released from the cytoplasmic membrane. Coupling of Fha44 translocation across both membranes would delay the acquisition of its folded structure until the protein emerges from the outer membrane. Such a model would be consistent with the extensive intracellular proteolysis of FHA derivatives in B. pertussis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 28 (1998), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The major adhesin of Bordetella pertussis, filamentous haemagglutinin (FHA), is produced and secreted at high levels by the bacterium. Mature FHA derives from a large precursor, FhaB, that undergoes several post-translational maturations. In this work, we demonstrate by site-directed mutagenesis that the N-terminal signal peptide of FHA is composed of 71 amino acids, including a 22-residue-long ‘N-terminal extension’ sequence. This sequence, although highly conserved in various other secretory proteins, does not appear to play an essential part in FHA secretion, as shown by deletion mutagenesis. The entire N-terminal signal region of FhaB is removed in the course of secretion by proteolytic cleavage at a site that corresponds to a Lep signal peptidase recognition sequence. After this maturation, the N-terminal glutamine residue is modified to a pyroglutamate residue. This modification is not crucial for heparin binding, haemagglutination or secretion. Interestingly, however, the modification is absent from Escherichia coli secreted FHA derivatives. In addition, it is dependent in B. pertussis on the presence of all three cysteines contained in the signal peptide of FhaB. These observations suggest that it does not occur spontaneously but perhaps requires a specific enzymatic machinery.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 49 (2003), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Many extracytoplasmic proteins undergo proteolytic processing during secretion, which is essential to their maturation. These post-translational modifications are carried out by specific enzymes whose subcellular localization is important for function. We have described a maturation subtilisin in Gram-negative Bordetella pertussis, the autotransporter SphB1. SphB1 catalyses the maturation of the precursor of the adhesin filamentous haemagglutinin (FHA) at the bacterial surface, in addition to the processing of its own precursor. Here, we show that the outer membrane anchor of SphB1 is crucial to its function, as evidenced by the lack of FHA maturation in a strain releasing a variant of SphB1 into the milieu. In contrast, surface association is not required for automaturation of SphB1. The surface retention of mature SphB1 is mediated by lipidation of the protein. The tethered protease appears to be stabilized by unusual Gly- and Pro-rich motifs at the N-terminus of the protein. This represents a new mode of localization for a protease involved in protein secretion.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Bordetella pertussis establishes infection by attaching to epithelial cells of the respiratory tract. One of its adhesins is filamentous haemagglutinin (FHA), a 500-Å-long secreted protein that is rich in β-structure and contains two regions, R1 and R2, of tandem 19-residue repeats. Two models have been proposed in which the central shaft is (i) a hairpin made up of a pairing of two long antiparallel β-sheets; or (ii) a β-helix in which the polypeptide chain is coiled to form three long parallel β-sheets. We have analysed a truncated variant of FHA by electron microscopy (negative staining, shadowing and scanning transmission electron microscopy of unstained specimens): these observations support the latter model. Further support comes from detailed sequence analysis and molecular modelling studies. We applied a profile search method to the sequences adjacent to and between R1 and R2 and found additional ‘covert’ copies of the same motifs that may be recognized in overt form in the R1 and R2 sequence repeats. Their total number is sufficient to support the tenet of the β-helix model that the shaft domain – a 350 Å rod – should consist of a continuous run of these motifs, apart from loop inserts. The N-terminus, which does not contain such repeats, was found to be weakly homologous to cyclodextrin transferase, a protein of known immunoglobulin-like structure. Drawing on crystal structures of known β-helical proteins, we developed structural models of the coil motifs putatively formed by the R1 and R2 repeats. Finally, we applied the same profile search method to the sequence database and found several other proteins – all large secreted proteins of bacterial provenance – that have similar repeats and probably also similar structures.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...