GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-05-17
    Description: The climate science community aims to improve our understanding of climate change due to anthropogenic influences on atmospheric composition and the Earth's surface. Yet not all climate interactions are fully understood and diversity in climate model experiments persists as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article synthesizes current challenges and emphasizes opportunities for advancing our understanding of climate change and model diversity. The perspective of this article is based on expert views from three multi-model intercomparison projects (MIPs) – the Precipitation Driver Response MIP (PDRMIP), the Aerosol and Chemistry MIP (AerChemMIP), and the Radiative Forcing MIP (RFMIP). While there are many shared interests and specialisms across the MIPs, they have their own scientific foci and specific approaches. The partial overlap between the MIPs proved useful for advancing the understanding of the perturbation-response paradigm through multi-model ensembles of Earth System Models of varying complexity. It specifically facilitated contributions to the research field through sharing knowledge on best practices for the design of model diagnostics and experimental strategies across MIP boundaries, e.g., for estimating effective radiative forcing. We discuss the challenges of gaining insights from highly complex models that have specific biases and provide guidance from our lessons learned. Promising ideas to overcome some long-standing challenges in the near future are kilometer-scale experiments to better simulate circulation-dependent processes where it is possible, and machine learning approaches for faster and better sub-grid scale parameterizations where they are needed. Both would improve our ability to adopt a smart experimental design with an optimal tradeoff between resolution, complexity and simulation length. Future experiments can be evaluated and improved with sophisticated methods that leverage multiple observational datasets, and thereby, help to advance the understanding of climate change and its impacts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-22
    Description: Globally, thermodynamics explains an increase in atmospheric water vapor with warming of around 7%/°C near to the surface. In contrast, global precipitation and evaporation are constrained by the Earth's energy balance to increase at ∼2-3%/°C. However, this rate of increase is suppressed by rapid atmospheric adjustments in response to greenhouse gases and absorbing aerosols that directly alter the atmospheric energy budget. Rapid adjustments to forcings, cooling effects from scattering aerosol, and observational uncertainty can explain why observed global precipitation responses are currently difficult to detect but are expected to emerge and accelerate as warming increases and aerosol forcing diminishes. Precipitation increases with warming are expected to be smaller over land than ocean due to limitations on moisture convergence, exacerbated by feedbacks and affected by rapid adjustments. Thermodynamic increases in atmospheric moisture fluxes amplify wet and dry events, driving an intensification of precipitation extremes. The rate of intensification can deviate from a simple thermodynamic response due to in-storm and larger-scale feedback processes, while changes in large-scale dynamics and catchment characteristics further modulate the frequency of flooding in response to precipitation increases. Changes in atmospheric circulation in response to radiative forcing and evolving surface temperature patterns are capable of dominating water cycle changes in some regions. Moreover, the direct impact of human activities on the water cycle through water abstraction, irrigation, and land use change is already a significant component of regional water cycle change and is expected to further increase in importance as water demand grows with global population.
    Description: Published
    Description: 49-75
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: climate change; land surface; precipitation; radiative forcing; water cycle
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-04
    Description: Since 2002, there has been a clear increase in Indian summer monsoon rainfall (ISMR). We demonstrate that this increase is associated with a change in the dynamics of the Intertropical Convergence Zone (ITCZ). Using a recently released reanalysis product from 1980–2016, we show that the ITCZ has strengthened and propagated northward since 2002. Analysis of the total energy budget reveals an increase in energy divergence and atmospheric diabatic heating, which is consistent with the changes in the ITCZ. Although global aerosol optical depth shows a significant positive trend during 1980–2016, it has declined over many parts of India since 2002. We put forward the hypothesis that this is the driver of the changing characteristics of the ITCZ. Our results suggest that changes in the dynamics of the ITCZ, together with changes in the energy/moisture budget, are responsible for the strengthening of ISMR since 2002, consistent with the emergence of a greenhouse gas‐induced signal.
    Description: Plain Language Summary: Indian summer monsoon rainfall (ISMR) is a major component of the Asian summer monsoon, providing 80% of the total annual rainfall in India. Even a small deviation of ISMR from normal has a significant effect on the Indian economy. Thus, understanding the dynamics of ISMR is of critical importance. During the latter part of the 20th century, ISMR experienced a significant reduction in its magnitude, with multiple hypotheses proposed to explain this weakening. However, we show that since 2002, there has been a clear increase in the magnitude of ISMR. We propose that this increase in magnitude is associated with the strengthening and northward propagation of the Intertropical Convergence Zone (ITCZ). Further analysis reveals that aerosol optical depth has decreased over many parts of India since 2002. Therefore, we hypothesize that the reduced aerosol emissions have played a significant role in the revival of ISMR since that time.
    Description: Key Points: The dynamics of the Intertropical Convergence Zone has a significant role in changing the characteristics of the Indian monsoon rainfall. Since 2002, the ITCZ has strengthened and propagated northward, thereby increasing the magnitude of the Indian monsoon rainfall. The reduced aerosol emissions is the main driver of the changing characteristics of ITCZ, which caused the revival of monsoon rainfall.
    Description: Fulbright‐Kalam climate fellowship
    Description: Natural Environment Research Council (NERC) http://dx.doi.org/10.13039/501100000270
    Keywords: 551.6 ; Indian subcontinent ; Monsoon rainfall ; drying
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...