GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 20 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The α-centred trp operator binds one dimer of the Trp repressor, whereas the β-centred trp operator binds two dimers of the Trp repressor (Carey et al., 1991; Haran et al., 1992). The Trp repressor with a Tyr-Gly-7 substitution binds almost as well as the wild-type Trp repressor to the α-centred trp operator, but it does not bind to the β-centred trp operator. This confirms that Tyr-7 is involved in the interaction between Trp repressor dimers, as seen in the crystal structure (Lawson and Carey, 1993). Further experiments with a-centred trp operator variants showed that positions 1 of the a-centred trp operators play a crucial role in tetramerisation. The two innermost base pairs of the α-centred trp operator are not involved in contacts with the dimer of the Trp repressor binding to it. However, substitutions in these positions (T-A to G-T) effectively transform the α-centred trp operator into a β-centred trp operator, and thus encourage the binding of two Trp repressor dimers to this operator. Finally, we demonstrate, with suitable heterodimers, that one subunit of each dimer suffices to bind to a β-centred trp operator.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Catabolite activator protein (CAP) ; Transcription activator ; Protein-protein interaction ; Positive control mutants ; DNA-binding protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Single amino acid substitutions for residue Glu171 in helix E of the catabolite gene activator protein (CAP) of Escherichia coli have been reported to abolish activation of transcription without impairing binding to the CAP site of the lac promoter. The negative charge of Glu171 was proposed to transmit the activating signal from CAP to RNA polymerase. However, this idea has been challenged by later work. We set up a system to re-examine this issue. We analysed the ability of mutant CAP-E 171 L and CAP-E 171 K proteins to bind a nearconsensus CAP site in vivo and found it to be diminished fourfold relative to wild type in each case. Activation of lac transcription by these mutant proteins remains the same as with wild-type CAP. Thus our results confirm that Glu171 in helix E of CAP is not involved directly in the activation of transcription. Yet CAP-E171K does not activate transcription as well as wild-type CAP under all circumstances. Possible reasons for this absence of activation are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...