GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Language
Years
  • 1
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: A wide variety of processes controls the time of occurrence, duration, extent, and severity of river floods. Classifying flood events by their causative processes may assist in enhancing the accuracy of local and regional flood frequency estimates and support the detection and interpretation of any changes in flood occurrence and magnitudes. This paper provides a critical review of existing causative classifications of instrumental and preinstrumental series of flood events, discusses their validity and applications, and identifies opportunities for moving toward more comprehensive approaches. So far no unified definition of causative mechanisms of flood events exists. Existing frameworks for classification of instrumental and preinstrumental series of flood events adopt different perspectives: hydroclimatic (large‐scale circulation patterns and atmospheric state at the time of the event), hydrological (catchment scale precipitation patterns and antecedent catchment state), and hydrograph‐based (indirectly considering generating mechanisms through their effects on hydrograph characteristics). All of these approaches intend to capture the flood generating mechanisms and are useful for characterizing the flood processes at various spatial and temporal scales. However, uncertainty analyses with respect to indicators, classification methods, and data to assess the robustness of the classification are rarely performed which limits the transferability across different geographic regions. It is argued that more rigorous testing is needed. There are opportunities for extending classification methods to include indicators of space–time dynamics of rainfall, antecedent wetness, and routing effects, which will make the classification schemes even more useful for understanding and estimating floods.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-18
    Description: The dataset comprises a range of variables describing characteristics of flood events and river catchments for 480 gauging stations in Germany and Austria. The event characteristics are asscoiated with annual maximum flood events in the period from 1951 to 2010. They include variables on event precipitation, antecedent catchment state, event catchment response, event timing, and event types. The catchment characteristics include variables on catchment area, catchment wetness, tail heaviness of rainfall, nonlinearity of catchment response, and synchronicity of precipitation and catchment state. The variables were compiled as potential predictors of heavy tail behaviour of flood peak distributions. They are based on gauge observations of discharge, E-OBS meteorological data (Haylock et al. 2008), mHM hydrological model simulations (Samaniego et al., 2010), 4DAS climate reanalysis data (Primo et al., 2019), and the 25x25 m resolution EU-DEM v1.1. A short description of the data processing is included in the file inventory and more details can be found in Macdonald et al. (2022).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-10
    Description: The severity of floods is shaped not only by event- and catchment-specific characteristics but also depends on the river network configuration. At the confluence of relevant tributaries with the main river, flood event characteristics may change depending on the magnitude and temporal match of flood waves. This superposition of flood waves may potentially increase the flood severity downstream in the main river. However, this aspect has not been analysed for a large set of river confluences to date. To fill this gap, the role of flood wave superposition in the flood severity at downstream gauges is investigated in four large river basins in Germany and Austria (the Elbe, the Danube, the Rhine and the Weser). A novel methodological approach to analyse flood wave superposition is presented and applied to mean daily discharge data from 37 triple points. A triple point consists of three gauges: one in the tributary as well as one upstream and downstream of the confluence with the main river respectively. At the triple points, differences and similarities in flood wave characteristics between the main river and the tributary are analysed in terms of the temporal match and the magnitudes of flood peaks. At many of the confluences analysed, the tributary peaks consistently arrive earlier than the main river peaks, although high variability in the time lag is generally detected. No large differences in temporal matching are detected for floods of different magnitudes. In the majority of cases, the largest floods at the downstream gauge do not occur due to perfect temporal match between the tributary and the main river. In terms of spatial variability, the impact of flood wave superposition is site-specific. Characteristic patterns of flood wave superposition are detected for flood peaks in the Danube River, where peak discharges largely increase due to inflow from alpine tributaries. Overall, we conclude that the superposition of flood waves is not the driving factor behind flood peak severity at the major confluences in Germany; however, a few confluences show the potential for strong flood magnifications if a temporal shift in flood waves was to occur.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Hydrological Sciences Journal - Journal des Sciences Hydrologiques
    Publication Date: 2020-12-14
    Description: Different upper tail indicators exist to characterize heavy tail phenomena, but no comparative study has been carried out so far. We evaluate the shape parameter (GEV), obesity index, Gini index and upper tail ratio (UTR) against a novel benchmark of tail heaviness – the surprise factor. Sensitivity analyses to sample size and changes in scale-to-location ratio are carried out in bootstrap experiments. The UTR replicates the surprise factor best but is most uncertain and only comparable between records of similar length. For samples with symmetric Lorenz curves, shape parameter, obesity and Gini indices provide consistent indications. For asymmetric Lorenz curves, however, the first two tend to overestimate, whereas Gini index tends to underestimate tail heaviness. We suggest the use of a combination of shape parameter, obesity and Gini index to characterize tail heaviness. These indicators should be supported with calculation of the Lorenz asymmetry coefficients and interpreted with caution.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-04-11
    Description: In some catchments, the distribution of annual maximum streamflow shows heavy tail behavior, meaning the occurrence probability of extreme events is higher than if the upper tail decayed exponentially. Neglecting heavy tail behavior can lead to an underestimation of the likelihood of extreme floods and the associated risk. Partly contradictory results regarding the controls of heavy tail behavior exist in the literature and the knowledge is still very dispersed and limited. To better understand the drivers, we analyze the upper tail behavior and its controls for 480 catchments in Germany and Austria over a period of more than 50 years. The catchments span from quickly reacting mountain catchments to large lowland catchments, allowing for general conclusions. We compile a wide range of event and catchment characteristics and investigate their association with an indicator of the tail heaviness of flood distributions, namely the shape parameter of the GEV distribution. Following univariate analyses of these characteristics, along with an evaluation of different aggregations of event characteristics, multiple linear regression models as well as random forests are constructed. A novel slope indicator, which represents the relation between the return period of flood peaks and event characteristics, captures the controls of heavy tails best. Variables describing the catchment response are found to dominate the heavy tail behavior, followed by event precipitation, flood seasonality and catchment size. The pre-event moisture state in a catchment has no relevant impact on the tail heaviness even though it does influence flood magnitudes.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-04-11
    Description: Statistical distributions of flood peak discharges often show heavy tail behavior, i.e., extreme floods are more likely to occur than would be predicted by commonly used distributions that have exponential asymptotic behavior. This heavy tail behavior may surprise flood managers and citizens, as human intuition tends to expect light tail behavior, and the heaviness of the tails is very difficult to predict, which may lead to unnecessarily high flood damage. Despite its high importance, the literature on the heavy tail behavior of flood distributions is rather fragmented. In this review, we provide a coherent overview of the processes causing heavy flood tails and the implications for science and practice. Specifically, we propose nine hypotheses on the mechanisms causing heavy tails in flood peak distributions related to processes in the atmosphere, the catchment and the river system. We then discuss to which extent the current knowledge supports or contradicts these hypotheses. We also discuss the statistical conditions for the emergence of heavy tail behavior based on derived distribution theory and relate them to the hypotheses and flood generation mechanisms. We review the degree to which the heaviness of the tails can be predicted from process knowledge and data. Finally, we recommend further research towards testing the hypotheses and improving the prediction of heavy tails.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-13
    Description: Die verlässliche Bestimmung von Hochwasserwahrscheinlichkeiten bleibt eine wichtige Frage für die Wasserwirtschaft und das Hochwasserrisikomanagement. Dies wurde angesichts des letzten extremen und überraschenden Hochwassers im Juli 2021 in Westdeutschland wieder deutlich. Dieser Artikel fasst Ergebnisse des Teilprojekts 3 der DFG-Forschungsgruppe SPATE (Space-Time Dynamics of Extreme Floods) zusammen. Das Teilprojekt untersuchte die Faktoren, die die Randschwere von Hochwasserverteilungen, die sogenannte tail heaviness, beeinflussen. Bei Verteilungen mit heavy tail haben extreme Ereignisse eine höhere Auftretenswahrscheinlichkeit als bei exponentiell abfallenden Verteilungen. Die Ergebnisse zeigen, dass die Hochwasserverteilungen in knapp zwei Dritteln der untersuchten Einzugsgebiete in Deutschland und Österreich heavy tails aufweisen, ebenso die Verteilungen von Starkniederschlägen an den meisten Klimastationen in Deutschland. Es wurden Ereignis- und Einzugsgebietsfaktoren identifiziert, die auf heavy tails der Hochwasserverteilungen hindeuten, auch wenn diese aus kurzen Abflusszeitreihen nicht verlässlich bestimmt werden können. Schließlich zeigte die Untersuchung an insgesamt 37 Mündungen von Flüssen in Deutschland, dass die Überlagerung von Hochwasserwellen kein maßgeblicher Mechanismus der Entstehung von heavy-tail-Verteilungen an deutschen Flüssen ist.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...