GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 151 (1998), S. 463-475 
    ISSN: 1420-9136
    Keywords: Key words: Anisotropy, mantle flow, subduction zones, shear-wave splitting.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract —We have obtained constraints on the strength and orientation of anisotropy in the mantle beneath the Tonga, southern Kuril, Japan, and Izu-Bonin subduction zones using shear-wave splitting in S phases from local earthquakes and in teleseismic core phases such as SKS. The observed splitting in all four subduction zones is consistent with a model in which the lower transition zone (520–660 km) and lower mantle are isotropic, and in which significant anisotropy occurs in the back-arc upper mantle. The upper transition zone (410–520 km) beneath the southern Kurils appears to contain weak anisotropy. The observed fast directions indicate that the geometry of back-arc strain in the upper mantle varies systematically across the western Pacific rim. Beneath Izu-Bonin and Tonga, fast directions are aligned with the azimuth of subducting Pacific plate motion and are parallel or sub-parallel to overriding plate extension. However, fast directions beneath the Japan Sea, western Honshu, and Sakhalin Island are highly oblique to subducting plate motion and parallel to present or past overriding plate shearing. Models of back-arc mantle flow that are driven by viscous coupling to local plate motions can reproduce the splitting observed in Tonga and Izu-Bonin, but further three-dimensional flow modeling is required to ascertain whether viscous plate coupling can explain the splitting observed in the southern Kurils and Japan. The fast directions in the southern Kurils and Japan may require strain in the back-arc mantle that is driven by regional or global patterns of mantle flow.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 153 (1998), S. 345-375 
    ISSN: 1420-9136
    Keywords: Key words: Attenuation, Frequency dependence, subduction zone.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract —Teleseismic broadband recordings of intermediate and deep focus earthquakes are used to quantify both compression (Q 〈alpha〉 and shear(Q 〈beta〉 ) wave attenuation within the Lau backarc basin. A spectral-ratio method is employed to measure differential attenuation (〈delta〉t*) between the depth phases sS, pP, and sP and the direct S and P phases over the frequency band 0.05 and 0.5 Hz. We use a stacking algorithm to combine the spectra of several phase pairs from a single event, having similar azimuth and range, to obtain more robust 〈delta〉t* measurements; these estimates are then used to compute the average Q above the focal depth. Q 〈beta〉 and Q 〈alpha〉 are measured directly from the sS-S and pP-P phase pairs respectively, however, the interpretation of 〈delta〉t* measured from sP-P requires assumptions about the ratio Q 〈alpha〉  /Q 〈beta〉 . We find an empirical ratio of Q 〈alpha〉  /Q 〈beta〉 = 1.93 for this region and use it to compute Q 〈alpha〉 and Q 〈beta〉 from the Q sP observations. We observe lateral and depth variations in both Q β and Q 〉alpha〈 beneath the tectonically active Lau Basin and the geologically older, inactive Lau Ridge and Fiji Plateau. The upper 200 km beneath the Central and Northern Lau Basin show a Q 〈beta〉 of 45–57 and a Q 〈alpha〉 of 102–121, and Q appears to increase rapidly with depth. The upper 600 km beneath the Lau backarc basin has a Q 〈beta〉 of 118–138, while over the same depth interval we observe a higher Q 〈beta〉 of 139–161 beneath the Lau Ridge and Fiji Plateau. We also find Q 〈alpha〉 of 235–303 beneath the northern Lau Basin and a higher Q 〈alpha〉 of 292–316 beneath the Fiji Plateau and the Lau Ridge measured directly from pP-P phase pairs. These geographic trends in the broadband Q measurements correlate with our previous long-period estimates of Q 〈beta〉 in this region, however, the broadband measurements themselves are higher by about a factor of two. These observations suggest substantial frequency dependence of Q in the upper mantle, beginning at frequencies less than 1.0 Hz and consistent with the power-law form Q∝ωα with 〈alpha〉 between -0.1 and -0.3.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-02
    Description: The Superior Province Rifting Earthscope Experiment (SPREE) recorded continuous seismic data over the Midcontinent Rift from April 2011 through October 2013. Analysis of power spectral density (PSD) estimates shows that horizontal noise levels at periods 〉20 s vary seasonally and diurnally. During winter, horizontal noise power at many SPREE stations is within 5 dB of nearby Transportable Array (TA) stations. As the ground thaws, SPREE stations in fine-grained material such as silt or clay become noisier due to changes in the mechanical properties of the soil. During summer, the daily mean PSD value of stations in fine-grained material is approximately 10–20 dB higher than in the winter, and daytime noise levels are 20–30 dB higher than nights. Stations in sandy material also show diurnal variations of 20–30 dB during summer, but the daily mean PSD value varies no more than 5–10 dB during the year. Most neighboring TA stations have relatively constant daily mean PSDs, and their horizontal components show summer diurnal variations of 10–15 dB. Some very quiet TA stations, such as SPMN, show a 5–10 dB increase in horizontal noise power during winter. The timing and amplitude of horizontal noise power variations between 20 and 800 s correlate with variations in atmospheric pressure PSDs. We propose that the grain size and pore water content of the material surrounding a shallow seismic station influences the local response to atmospheric pressure. Stations that must be placed in soft sediments should be installed in sandy, well-drained material to minimize long-period noise generated by atmospheric pressure variations. Online Material: Figures with examples of signals, power spectra, and their differences.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-14
    Description: An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency–slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ~150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn–air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-13
    Description: Double seismic zones are two-layered distributions of intermediate-depth earthquakes that provide insight into the thermomechanical state of subducting slabs. We present new precise hypocenters of intermediate-depth earthquakes in the Tonga subduction zone obtained using data from local island–based, ocean-bottom, and global seismographs. The results show a downdip compressional upper plane and a downdip tensional lower plane with a separation of about 30 km. The double seismic zone in Tonga extends to a depth of about 300 km, deeper than in any other subduction system. This is due to the lower slab temperatures resulting from faster subduction, as indicated by a global trend toward deeper double seismic zones in colder slabs. In addition, a line of high seismicity in the upper plane is observed at a depth of 160 to 280 km, which shallows southward as the convergence rate decreases. Thermal modeling shows that the earthquakes in this "seismic belt" occur at various pressures but at a nearly constant temperature, highlighting the important role of temperature in triggering intermediate-depth earthquakes. This seismic belt may correspond to regions where the subducting mantle first reaches a temperature of ~500°C, implying that metamorphic dehydration of mantle minerals in the slab provides water to enhance faulting.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-05-20
    Description: Microseisms are the background seismic vibrations mostly driven by the interaction of ocean waves with the solid Earth. Locating the sources of microseisms improves our understanding of the range of conditions under which they are generated and has potential applications to seismic tomography and climate research. In this study, we detect persistent source locations of P -wave microseisms at periods of 5–10 s (0.1–0.2 Hz) using broad-band array noise correlation techniques and frequency-slowness analysis. Data include vertical component records from four temporary seismic arrays in equatorial and southern Africa with a total of 163 broad-band stations and deployed over a span of 13 yr (1994–2007). While none of the arrays were deployed contemporaneously, we find that the recorded microseismic P waves originate from common, distant oceanic bathymetric features with amplitudes that vary seasonally in proportion with extratropical cyclone activity. Our results show that the majority of the persistent microseismic P -wave source locations are within the 30–60º latitude belts of the Northern and Southern hemispheres while a substantially reduced number are found at lower latitudes. Variations in source location with frequency are also observed and indicate tomographic studies including microseismic body wave sources will benefit from analysing multiple frequency bands. We show that the distribution of these source regions in the North Atlantic as well as in the Southern Ocean correlate with variations in bathymetry and ocean wave heights and corroborate current theory on double-frequency microseism generation. The stability of the source locations over the 13-yr time span of our investigation suggests that the long-term body wave microseism source distribution is governed by variations in the bathymetry and ocean wave heights while the interaction of ocean waves has a less apparent influence.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-06-21
    Description: We constrain azimuthal anisotropy in the West Antarctic upper mantle using shear wave splitting parameters obtained from teleseismic SKS, SKKS and PKS phases recorded at 37 broad-band seismometres deployed by the POLENET/ANET project. We use an eigenvalue technique to linearize the rotated and shifted shear wave horizontal particle motions and determine the fast direction and delay time for each arrival. High-quality measurements are stacked to determine the best fitting splitting parameters for each station. Overall, fast anisotropic directions are oriented at large angles to the direction of Antarctic absolute plate motion in both hotspot and no-net-rotation frameworks, showing that the anisotropy does not result from shear due to plate motion over the mantle. Further, the West Antarctic directions are substantially different from those of East Antarctica, indicating that anisotropy across the continent reflects multiple mantle regimes. We suggest that the observed anisotropy along the central Transantarctic Mountains (TAM) and adjacent West Antarctic Rift System (WARS), one of the largest zones of extended continental crust on Earth, results from asthenospheric mantle strain associated with the final pulse of western WARS extension in the late Miocene. Strong and consistent anisotropy throughout the WARS indicate fast axes subparallel to the inferred extension direction, a result unlike reports from the East African rift system and rifts within the Basin and Range, which show much greater variation. We contend that ductile shearing rather than magmatic intrusion may have been the controlling mechanism for accumulation and retention of such coherent, widespread anisotropic fabric. Splitting beneath the Marie Byrd Land Dome (MBL) is weaker than that observed elsewhere within the WARS, but shows a consistent fast direction, possibly representative of anisotropy that has been ‘frozen-in’ to remnant thicker lithosphere. Fast directions observed inland from the Amundsen Sea appear to be radial to the dome and may indicate radial horizontal mantle flow associated with an MBL plume head and low upper mantle velocities in this region, or alternatively to lithospheric features associated with the complex Cenozoic tectonics at the far-eastern end of the WARS.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-30
    Description: S -wave receiver functions (SRFs) are used to investigate crustal and upper-mantle structure beneath several ice-covered areas of Antarctica. Moho S-to-P (Sp) arrivals are observed at ~6–8 s in SRF stacks for stations in the Gamburtsev Mountains (GAM) and Vostok Highlands (VHIG), ~5–6 s for stations in the Transantarctic Mountains (TAM) and the Wilkes Basin (WILK), and ~3–4 s for stations in the West Antarctic Rift System (WARS) and the Marie Byrd Land Dome (MBLD). A grid search is used to model the Moho Sp conversion time with Rayleigh wave phase velocities from 18 to 30 s period to estimate crustal thickness and mean crustal shear wave velocity. The Moho depths obtained are between 43 and 58 km for GAM, 36 and 47 km for VHIG, 39 and 46 km for WILK, 39 and 45 km for TAM, 19 and 29 km for WARS and 20 and 35 km for MBLD. SRF stacks for GAM, VHIG, WILK and TAM show little evidence of Sp arrivals coming from upper-mantle depths. SRF stacks for WARS and MBLD show Sp energy arriving from upper-mantle depths but arrival amplitudes do not rise above bootstrapped uncertainty bounds. The age and thickness of the crust is used as a heat flow proxy through comparison with other similar terrains where heat flow has been measured. Crustal structure in GAM, VHIG and WILK is similar to Precambrian terrains in other continents where heat flow ranges from ~41 to 58 mW m –2 , suggesting that heat flow across those areas of East Antarctica is not elevated. For the WARS, we use the Cretaceous Newfoundland–Iberia rifted margins and the Mesozoic-Tertiary North Sea rift as tectonic analogues. The low-to-moderate heat flow reported for the Newfoundland–Iberia margins (40–65 mW m –2 ) and North Sea rift (60–85 mW m –2 ) suggest that heat flow across the WARS also may not be elevated. However, the possibility of high heat flow associated with localized Cenozoic extension or Cenozoic-recent magmatic activity in some parts of the WARS cannot be ruled out.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-22
    Description: The marine portion of the West Antarctic Ice Sheet (WAIS) in the Amundsen Sea Embayment (ASE) accounts for one-fourth of the cryospheric contribution to global sea-level rise and is vulnerable to catastrophic collapse. The bedrock response to ice mass loss, glacial isostatic adjustment (GIA), was thought to occur on a time scale of 10,000 years. We used new GPS measurements, which show a rapid (41 millimeters per year) uplift of the ASE, to estimate the viscosity of the mantle underneath. We found a much lower viscosity (4 x 10 18 pascal-second) than global average, and this shortens the GIA response time scale from tens to hundreds of years. Our finding requires an upward revision of ice mass loss from gravity data of 10% and increases the potential stability of the WAIS against catastrophic collapse.
    Keywords: Oceanography
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...