GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Heteroepitaxial Y2O3 films were grown on an Si(111) substrate by ion assisted evaporation in an ultrahigh vacuum, and their properties such as crystallinity, film stress, and morphological change were investigated using the various measurement methods. The crystallinity was assessed by x-ray diffraction (XRD) and reflection high-energy electron diffraction. Interface crystallinity was also examined by Rutherford backscattering spectroscopy (RBS) channeling and transmission electron microscopy. The strain of the films was measured by RBS channeling and XRD. Surface and interface morphological characteristics were observed by atomic force microscopy and x-ray scattering method. By comparing the interface with the surface characteristics, we can conclude that many defects at the interface region were generated by interface interaction between the yttrium metal and Si substrate. Moreover, the film quality dominantly depended on the deposition temperature. The crystallinity was greatly improved and the surface roughness was drastically decreased in the temperature range 500–600 °C. On the other hand, in the temperature range 600–700 °C, the compressive stress and film density were further increased, and the island size decreased. Also, the shape of the surface islands was transformed from elliptical to triangular. The film stress was found primarily at the interface area because of the interaction between yttrium and Si substrate. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 71 (1997), S. 903-905 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Heteroepitaxial Y2O3 films were grown on Si(100) substrates by the technique of reactive ionized cluster beam deposition. The crystallinity of the films was investigated with reflection high energy electron diffraction (RHEED), glancing angle x-ray diffraction (GXRD), and the interface was examined by high resolution transmission electron microscopy (HRTEM). Under the condition of 5 kV acceleration voltage at the substrate temperature of 800 °C, the Y2O3 film grows epitaxially on the Si(100) substrate. RHEED and GXRD results revealed that the epitaxial relationship between Y2O3 and Si(100) is Y2O3(110)//Si(100), and HRTEM observation showed a sharp interface without an amorphous layer. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 2909-2914 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We investigated the initial and epitaxial growth stage of Y2O3/Si(100) grown by reactive ionized cluster beam deposition, using x-ray diffraction (XRD), atomic force microscope, and reflection high-energy electron diffraction. We also investigated the crystalline structure of the films using transmission electron microscopy and XRD. The preferred growth direction of Y2O3 grown by an ion beam changed completely from the 〈111〉 to the 〈110〉 orientation in order to minimize the overall energy of the film as the substrate temperature increased. In addition to the kinetic energy of the deposited atoms, oxygen partial pressure and the substrate surface state also bear a relationship to the change in the preferred growth direction. The crystalline growth of Y2O3 film depends on the state of the surface at the initial growth stage, whether the Si surface was first exposed to oxygen or yttrium. In particular, the silicon oxide layer which formed on the Si surface during the initial growth stage played an important role in the epitaxial growth as well as the preferred growth direction of Y2O3 film. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...