GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    ISSN: 1432-1912
    Keywords: Key words Cardiomyocytes ; Opioid receptors ; G proteins ; Pertussis toxin ; Dynorphin ; U-50 ; 488 ; Naloxone ; Nor-binaltorphimine ; DADLE
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Opioids directly decrease the contractile response of isolated ventricular cardiomyocytes to electrical stimulation. To investigate whether these effects are mediated via GTP-binding Gi/o proteins we examined the influence of pertussis toxin on the effects of the κ-opioid receptor agonist trans-(±)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide (U-50,488) methanesulphonate and on the as yet undescribed effects of the opioid peptide dynorphin A (1–8) on contraction. In isolated, electrically driven, rat ventricular cardiomyocytes both agents concentration dependently reduced cell shortening within 15 min, decreasing the contractile response by 79±4% (n=5) and 62±2% (n=6) of control values at maximal effective concentrations of 10 µM (U-50,488) and 1 µM [dynorphin A (1–8)], respectively. Pertussis toxin pre-treatment (200 ng/ml; 4.5–5 h) completely abolished the effects of U-50,488 and dynorphin A (1–8) on the contractile response, indicating that these effects are mediated via Gi/o proteins. In addition, the non-selective opioid receptor antagonist (–)-naloxone and the κ-opioid receptor antagonist nor-binaltorphimine antagonized the effects of U-50,488 and dynorphin A (1–8) on the contractile response. Furthermore, the µ- and δ-opioid receptor agonist (D-Ala2, D-Leu5)-enkephalin (DADLE) had no effects on contraction. These results indicate that the decrease in cell shortening is due to stimulation of κ-opioid receptors. The direct effect of κ-opioid receptor agonists on the contractile response thus represents an additional mechanism for decreasing cardiac contractility, besides the M-cholinoceptor- or adenosine receptor-mediated pathway. It is conceivable that increased release of endogenous dynorphins from the heart during hypoxia may protect the heart in a similar manner to adenosine.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...