GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: tumor targeting ; protein delivery ; drug carriers ; micelles ; long-circulating liposomes ; Lewis lung carcinoma ; tumor targeting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. The purpose of our work was to compare the biodistribution and tumor accumulation of a liposome- or micelle-incorporated protein in mice bearing subcutaneously-established Lewis lung carcinoma. Methods. A model protein, soybean trypsin inhibitor (STI) was modified with a hydrophobic residue of N-glutaryl-phosphatidyl-ethanolamine (NGPE) and incorporated into both polyethyleneglycol(MW 5000)-distearoyl phosphatidyl ethanolamine (PEG-DSPE) micelles (〈 20 nm) and PEG-DSPE-modified long-circulating liposomes (ca. 100 nm). The protein was labeled with 111In via protein-attached diethylene triamine pentaacetic acid (DTPA), and samples of STI-containing liposomes or micelles were injected via the tail vein into mice bearing subcutaneously-established Lewis lung carcinoma. At appropriate time points, mice were sacrified and the radioactivity accumulated in the tumor and main organs was determined. Results. STI incorporated into PEG-lipid micelles accumulates in sub-cutaneously established Lewis lung carcinoma in mice better than the same protein anchored in long-circulating PEG-liposomes. Conclusions. Small-sized long-circulating delivery systems, such as PEG-lipid micelles, are more efficient in the delivery of protein to Lewis lung carcinoma than larger long-circulating liposomes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: dequalinium ; liposome ; bolaform drug ; non-viral transfection vector ; gene therapy ; drug delivery
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. Dequalinium, a drug known for over 30 years, is a dicationic amphiphile compound resembling bolaform electrolytes. The purpose of our work was to determine the state of aggregation of dequalinium in aqueous medium and to investigate both, its ability to bind DNA and its potential to serve as a novel non-viral transfection vector. Methods. The form of aggregation was determined employing electron microscopic techniques. The DNA binding capacity of dequalinium was assayed using SYBR™ Green I stain. For in vitro cell transfection experiments plasmid DNA encoding for firefly luciferase was used. Results. Dequalinium forms in aqueous medium liposome-like aggregates, which we term DQAsomes. These dequalinium vesicles bind DNA and they are able to transfect cells in vitro with an efficiency comparable to Lipofectin™. Conclusions. Based on the intrinsic properties of dequalinium such as the in vivo selectivity for carcinoma cells and selective accumulation in mitochondria we propose DQAsomes as a novel and unique drug and gene delivery system.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chicester [u.a.] : Wiley-Blackwell
    Journal of Molecular Recognition 8 (1995), S. 59-62 
    ISSN: 0952-3499
    Keywords: drug targeting ; viral surface glycoproteins ; glycoproteins ; HIV-1 gp160 ; gene delivery ; ricin-a ; artificial viral envelopes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The goal of this study was to exploit molecular recognition of cell surface receptors by viral surface glycoproteins as a means for the selective intracellular delivery of macromolecules. To accomplish this, artificial viral envelopes (AVE) resembling the human immunodeficiency virus-1 (HIV-1) were designed as a model system. Recombinant HIV-1 surface glycoprotein gp160 (HIV-1 rgp 160) was inserted in the artificial envelope by a two-step detergent dialysis process. The artificial HIV-1 envelope recognized the CD4 cell surface receptor. FITC-dextran and ricin A were employed as model macromolecules as they cannot passively diffuse across cell membranes. Selective transfer of FITC-dextran encapsulated in HIV-1 rgp160 AVE into a CD4-positive cell line (REX-1B) versus a CD4-negative cell line (KG-1) was demonstrated. Ricin A at concentrations as low as 2 ng/ml arrested cell growth of CD4-positive MOLT-4 cells, whereas 8ng/ml ricin A in solution had no effect on cell growth. The arrest of cell growth was reverted in the presence of excess anti-gp120 monoclonal antibody. Naked enveloped (without HIV-1 rgp 160 inserted) were alsofound to interact with cells and transfer material, although less efficiently and in a non-specific manner. Viral mimicry using AVE may be a means for targeted intracellular delivery of peptides, proteins, enzymes, toxins, oligodeoxynucleotides, gene constructs, and other non-diffusive, labile or toxic macromolecules.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...