GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Planets - Origin. ; Electronic books.
    Description / Table of Contents: This multidisciplinary volume presents an authoritative overview of the latest in our understanding of the processes of planet formation. From meteorite observations to orbital dynamics, Planetesimals is the essential reference for those interested in planetary formation, solar system dynamics, exoplanets and planetary habitability.
    Type of Medium: Online Resource
    Pages: 1 online resource (420 pages)
    Edition: 1st ed.
    ISBN: 9781316862490
    Series Statement: Cambridge Planetary Science Series ; v.Series Number 16
    DDC: 523.44
    Language: English
    Note: Cover -- Half-title -- Series information -- Title page -- Copyright information -- Table of contents -- List of Contributors -- 1 Planetesimals -- Acknowledgments -- References -- Part One Dynamical Evolution -- 2 Signatures of Hit-and-run Collisions -- 2.1 Introduction -- 2.1.1 Final Accretion -- 2.2 Catastrophic Disruption -- 2.2.1 Stripping of Mantles -- 2.2.2 Disposal of Rock -- 2.2.3 Orphans and Oligarchs -- 2.3 Surviving Projectiles -- 2.4 Planetesimals to Embryos -- 2.4.1 Differentiation and Segregation -- 2.4.2 Planetesimals, Embryos, and Shocks -- 2.5 Simulations of Hit and Run -- 2.5.1 Segregation and Clumping -- 2.5.2 Transitions to Giant Impacts -- 2.5.3 Pressure Unloading -- 2.6 Accretion and Attrition -- 2.6.1 Hiding in Plain Sight -- 2.6.2 Hit-and-run Return -- 2.7 Conclusions -- Acknowledgments -- References -- 3 Using the Main Asteroid Belt to Constrain Planetesimal and Planet Formation -- 3.1 Introduction -- 3.2 Constraints for Collisional Evolution -- 3.2.1 Wavy Main Belt Size Frequency Distribution -- 3.2.2 Asteroid Families -- 3.2.3 Impact Basins on Vesta -- 3.2.4 Near-Earth Asteroids and Lunar Craters -- 3.2.5 Additional Constraints -- 3.3 Reconstructing the Original Asteroid Belt -- 3.3.1 A Brief Description of Generic Collisional Models -- 3.3.2 Estimating Collisional Evolution in the Primordial Main Belt -- 3.4 Formation and Dynamical Constraints for the Main Belt Asteroids -- 3.4.1 Could the Asteroid Belt Have Formed With Low Mass? -- 3.4.2 Orbital Excitation, Radial Mixing -- 3.5 Modeling Work Compared with Constraints -- 3.5.1 Formation of the Present-day Asteroid Belt from a Low-mass Belt -- 3.5.2 Formation of the Present-day Asteroid Belt from a Massive Mass Belt -- I. Migration of Planetary Embryos -- II. Stirring from a Population of Resident Embryos -- III. Migration of Jupiter Through the Asteroid Belt. , 3.6 Conclusions -- Acknowledgments -- References -- Part Two Chemical and Mineralogical Diversity -- 4 Differentiation Under Highly Reducing Conditions: New Insights from Enstatite Meteorites and Mercury -- 4.1 Introduction -- 4.2 Insights from Aubrites -- 4.3 Implications for Mercury -- 4.4 Summary -- References -- 5 Origin and Evolution of Volatile-rich Asteroids -- 5.1 Introduction -- 5.2 C-Type Asteroid Inventory -- 5.3 Origin Scenarios and Accretional Environments -- 5.3.1 Accretion Timeframe -- 5.3.2 Original Composition -- 5.3.3 Accretion Timescale -- 5.4 Processes Driving the Evolution of Volatile-rich Bodies -- 5.4.1 Aqueous Alteration -- 5.4.2 Salt Production -- 5.4.3 Hydrothermal Circulation -- 5.4.4 Physical Differentiation -- 5.5 Differentiation of Large Volatile-rich Asteroids -- 5.6 Addressing Differentiation at Ceres with the Dawn Mission -- 5.7 Summary -- Acknowledgments -- References -- 6 Silicate Melting and Volatile Loss During Differentiation in Planetesimals -- 6.1 Introduction -- 6.2 Radiogenic Heating and Volatile Contents of Early Planetesimals -- 6.3 The Fate of Volatiles -- 6.4 The Fate of Silicate Melts -- 6.5 Implications -- 6.6 Summary -- Acknowledgments -- References -- 7 Iron and Stony-iron Meteorites: Evidence for the Formation, Crystallization, and Early Impact Histories of Differentiated Planetesimals -- 7.1 Introduction -- 7.2 Taxonomy and Associations -- 7.3 Fractionally Crystallized Iron Meteorites -- 7.4 Silicate-bearing Iron Meteorites -- 7.5 Mesosiderites and Pallasites -- 7.5.1 Melting and Differentiation of the Pallasite and Mesosiderite Parent Bodies -- 7.5.2 Origin of Pallasite and Mesosiderite Breccias -- 7.6 Summary -- Acknowledgments -- References -- 8 Arguments for the Non-existence of Magma Oceans in Asteroids -- 8.1 Introduction: The Ambiguity of the Term ''Magma Ocean'' Applied to Asteroids. , 8.2 Physical Issues -- 8.2.1 Heat Source and Heating Prior to Melting -- 8.2.2 The Onset of Melting -- 8.2.3 Melt Migration -- 8.2.4 Melt Accumulation -- 8.3 Geochemical and Petrological Issues -- 8.3.1 Meteorite Evidence Relevant to the Magma Ocean Concept for Asteroids -- 8.3.2 Meteorite Evidence for the Degree of Fe,Ni-FeS and Silicate Melting on Asteroids -- Compositional Information Summary -- 8.4 Summary -- Acknowledgments -- References -- 9 Magnetic Fields on Asteroids and Planetesimals -- 9.1 Introduction -- 9.2 Meteoritic Paleomagnetism -- 9.2.1 Magnetic Fields Recorded in Meteorites -- 9.2.2 Magnetic Fields in Asteroids -- 9.3 Core Formation -- 9.4 Planetesimal Dynamos -- 9.4.1 Modeling Methods -- 9.4.2 Planetesimal Dynamo Models -- 9.5 Core Crystallization -- 9.5.1 Physics of Core Crystallization -- 9.5.2 Dynamos During Core Crystallization -- 9.6 Alternative Magnetization Mechanisms -- 9.6.1 Dynamo Alternatives to Core Convection -- 9.6.2 The Solar Nebula Magnetic Environment -- 9.7 Summary -- Acknowledgments -- References -- 10 Magnetic Mineralogy of Meteoritic Metal: Paleomagnetic Evidence for Dynamo Activity on Differentiated Planetesimals -- 10.1 Introduction -- 10.2 Mineral Magnetism of Meteoritic Metal -- 10.2.1 Summary of Microstructural Changes in Zoned Taenite -- 10.2.2 X-ray Photo-emission Electron Microscopy -- 10.2.3 Magnetic Microstructures of Zoned Taenite -- 10.3 Dynamo Activity on the Main-group Pallasite Parent Body -- 10.3.1 Paleomagnetic Constraints on Origin of the Main-group Pallasites -- 10.3.2 Nanopaleomagnetic Constraints on the Properties of the Pallasite Core Dynamo -- 10.4 Opportunities for Future Studies -- 10.5 Summary -- Acknowledgments -- References -- 11 Chronology of Planetesimal Differentiation -- 11.1 Introduction -- 11.2 Dating Methods -- 11.2.1 Extinct and Extant Chronometers. , 11.2.2 Model Ages for Dating Differentiation -- 11.3 Chronology of Core Formation -- 11.3.1 Iron Meteorites -- 11.3.2 Angrites and Eucrites -- 11.3.3 Distinct Stages of Melt Segregation During Core Formation -- 11.3.4 Link Between Differentiation and Accretion Timescales -- 11.4 Timescales of Silicate Differentiation and Crust Formation -- 11.4.1 Silicate Differentiation -- 11.4.2 Crust Formation -- 11.5 Conclusions -- Acknowledgments -- References -- 12 Stable Isotope Evidence for the Differentiation and Evolution of Planetesimals -- 12.1 Introduction -- 12.2 Iron Isotopic Constraints on Temperature and Composition -- 12.2.1 Chondritic Reference Frame -- 12.2.2 Pallasites - a natural analog for differentiation -- 12.2.3 Mars - Compositional Variations -- 12.2.4 Vesta -- 12.2.5 Aubrites -- 12.2.6 Angrites -- 12.3 Silicon Isotopic Constraints on Composition and Oxygen Fugacity -- 12.3.1 Chondritic Reference Frame -- 12.3.2 Mars -- 12.3.3 Vesta -- 12.3.5 Aubrites -- 12.3.6 Angrites -- 12.4 Zinc Isotopic Constraints on Volatility -- 12.4.1 Chondritic Reference Frame -- 12.4.2 Tektites -- 12.4.3 Differentiated Meteorites -- 12.4.4 The Moon -- 12.5 Summary -- Acknowledgments -- References -- Part Three Asteroids as Records of Formation and Differentiation -- 13 Composition of Solar System Small Bodies -- 13.1 Introduction -- 13.2 Main-belt Asteroids -- 13.2.1 S-Complex Asteroids -- Surface Composition -- Bulk Composition -- 13.2.2 C-Complex Asteroids -- Surface Composition -- Bulk Composition -- 13.2.3 P- and D-Type Asteroids -- Surface Composition -- Bulk Composition -- 13.2.4 Remaining Asteroid (A-, K-, L-, M-, O-, R-, V-, Xe-, Xc-, and Xk-) Types -- Surface Composition -- Bulk Composition -- 13.3 Jupiter Trojans -- 13.3.1 Surface composition -- 13.3.2 Bulk Composition -- 13.4 Irregular Satellites of the Giant Planets -- 13.4.1 Surface Composition. , 13.4.2 Bulk Composition -- 13.5 Neptune Trojans -- 13.5.1 Surface Composition -- 13.5.2 Bulk Composition -- 13.6 KBOs -- 13.6.1 Surface Composition -- 13.6.2 Bulk Composition -- 13.7 Comets -- 13.7.1 Volatiles -- 13.7.2 Dust -- 13.7.3 Bulk Composition -- 13.8 Decoding the Solar System's Past -- 13.8.1 Constraints on Current Dynamical Models (Grand Tack, Nice Model) -- 13.8.2 Primordial Architecture -- Spatial Distribution -- Temporal Distribution -- 13.9 Conclusions -- Acknowledgments -- References -- 14 Evidence for Differentiation among Asteroid Families -- 14.1 Introduction -- 14.2 Vesta Family -- 14.3 Flora Family -- 14.4 Eunomia Family -- 14.5 Eos Family -- 14.6 Hungaria Family -- 14.7 Merxia and Agnia Families -- 14.8 Absence of A-types among Asteroid Families -- 14.9 Absence of a Ceres Family -- 14.10 Conclusions -- Acknowledgments -- References -- 15 Dawn at Vesta: Paradigms and Paradoxes -- 15.1 Introduction -- 15.2 Vesta as a Differentiated Protoplanet -- 15.2.1 Evidence from HEDs -- 15.2.2 Evidence from Density Distribution and Core Size -- 15.3 The Case of the Missing Olivine -- 15.3.1 Olivine on Vesta's Surface -- 15.3.2 Olivine Distribution at Depth -- 15.4 Architecture of Vesta's Crust and Mantle -- 15.4.1 The Crust-Mantle Conundrum -- 15.4.2 Crustal Structure and Igneous Processes -- 15.5 Water on Vesta -- 15.6 Implications for Formation and Evolution of Planetesimals -- 15.7 Summary -- Acknowledgments -- References -- 16 Planetesimals in Debris Disks -- 16.1 Introduction -- 16.2 The Formation of Planetesimals -- 16.3 Planetesimals and Planetary Debris Disks -- 16.4 Dust Production and Evolution in Debris Disks -- 16.4.1 Collisional Timescales -- 16.4.2 Collisional Cascades -- 16.4.3 Non-gravitational Forces on Small Particles -- 16.5 Planetesimals and Debris: Common Patterns -- 16.5.1 Very Hot Dust. , 16.5.2 Hot Dust in the Terrestrial Planet Zone.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht ; Mensch-Maschine-Kommunikation
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (46 Seiten, 2,88 MB) , Illustrationen, Diagramme
    Edition: v1.0
    Language: German
    Note: Förderkennzeichen BMWi 01MG13001G. - Verbund-Nummer 01142925 , Paralleltitel dem englischen Berichtsblatt entnommen , Literaturverzeichnis: Blatt 40-42 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Mit deutscher und englischer Zusammenfassung
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Hochschulschrift ; Forschungsbericht ; Objektorientierte Programmierung ; Java ; Programmverifikation ; Korrektheit ; Automatisches Beweisverfahren ; Spezifikationssprache ; Design by Contract ; Dynamische Logik ; Deduktion ; Abstrakte Interpretation
    Type of Medium: Online Resource
    Pages: Online-Ressource
    Edition: Print on demand
    ISBN: 9783866446236
    DDC: 005.14
    Language: English
    Note: Auch als gedr. Ausg. vorhanden , Zugl.: Karlsruhe, KIT, Diss., 2010 , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: To study the effects of altering dopaminergic input on the levels and rate of synthesis of dopamine receptors, corpora striata of mice were lesioned unilaterally with 6-hydroxydopamine (6-OHDA), and the densities and levels of the mRNAs for D1 and D2 dopamine receptors were determined. The results showed that 6-OHDA caused significant reductions in D1 dopamine receptors and in D1 dopamine receptor mRNA in dorsolateral and dorsomedial regions of the lesioned striatum. By contrast, 6-OHDA lesions caused significant increases in D2 dopamine receptors and in D2 dopamine receptor mRNA in dorsolateral and ventrolateral regions of the lesioned striatum. To assess the effects of 6-OHDA lesions on the rate of synthesis of D1 and D2 dopamine receptors, the irreversibly acting dopamine receptor antagonist 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) was administered, and the rate of recovery of these receptors determined. The lesions decreased the rate of synthesis of D1 dopamine receptors in dorsolateral striatum but increased the rate of synthesis of D2 dopamine receptors in dorsolateral striatum. Correlation of these molecular events with dopaminergic behaviors showed that the rate of recovery from EEDQ-induced cataleptic activity and the recovery from inhibition of quinpirole-induced rotational behavior was more rapid than the recovery of either the D1 or D2 dopamine receptor. These results suggest that dopaminergic denervation differentially affects the rate of synthesis of D1 and D2 dopamine receptors in mouse striatum, and that these alterations in the rates of synthesis of the receptors may be explained by corresponding alterations in the levels of the respective transcripts for these receptors.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 11 (1972), S. 4552-4557 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 4 (1965), S. 686-688 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 30 (1965), S. 2483-2485 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 31 (1966), S. 2023-2025 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 185 (1971), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 3 (1964), S. 584-587 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...