GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 15 (1995), S. 199-219 
    ISSN: 1572-8986
    Keywords: Metallic particles ; unsteady heating ; free-molecule regime ; analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Analytical results are presented concerning the unsteady heating of a metallic spherical particle innnersed in a rarefied plasma. The results show that the tinte periods required for the solid-phase heating, melting, liquid-phase heating, and evaporation are all proportional to the particle radius. For estimating the time needed for the solid-phase heating and that for the melting, the additional heat transfer rmechanism due to the thermionic emission front the particle surface is usually negligible since the surface temperatures of the particle heated in the plasma are, in general, compartively low during those heating steps. Thermionic emission assumes its effect only as the higher surface temperatures of the heated particle are involved (e.g., higher than 4000 K), while radiation loss shows its effects at much lower wall temperatures. As the plasma temperature is comparatively low, radiation heat loss may restrict the surface temperature of a particle to such a low value that the effect of thermionic emission on the overall heating time can he neglected and complete evaporation of refractor y metallic particles becomes impossible. The uncertainty in the calculation of the effect of thermionic emission is associated with the choice of the value of the effective work function for the particle material.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...